Sun in a Bottle: The Strange History of Fusion and the Science of Wishful Thinking - Charles Seife (2008)


We are also human, and we need miracles, and hope they exist.


An intricately crafted glass mushroom on a metal pedestal, the two-foot-tall machine dominated the room—even when it wasn’t running. But when the operator twisted a dial and brought the BioCharger to life, everybody stopped to look. The helical glass coil at the top of the mushroom glowed red, and the whole machine throbbed with electricity. Tubes running up and down the mushroom’s stalk fluoresced with blue and red light. It crackled ominously as strands of violet lightning shimmied down the sides and dissipated into the air. As the crowd stood transfixed, the smiling operator turned the dial back and the machine died abruptly. The smell of ozone lingered in the air.

The BioCharger is a device that supposedly transmits healing energy directly into your body. Its inventor swears that the machine will help cure your thrush, fatigue, diarrhea, night sweats, frequent urination, colds, unrefreshed sleep, and almost anything else that ails you. The machine wouldn’t ordinarily be allowed anywhere near a scientific conference, but the BioCharger wasn’t out of place at this one. Neither was the device to test how much mercury was in your mouth to help diagnose the causes of your diseases, nor the presentation that discussed the “energy chair”: an ordinary white plastic lawn chair with a generator underneath. (“We used to call it the electric chair, but figured we had to change the name,” the presenter said.) The chair supposedly leaves you refreshed and energized after sitting in it. At an ordinary scientific gathering, such claims would be laughed out of the building. But the Second International Conference on Future Energy was no ordinary scientific conference.

Held in September 2006 on the outskirts of Washington, DC, the Conference on Future Energy was a celebration of sorts. Its convener, Thomas Valone, had recently won a long legal battle with his employer, the U.S. Patent and Trademark Office. Valone was a patent examiner who had, in his view, been fired for his belief in cold fusion. A year after being reinstated in his job (with back pay), Valone called a gathering of researchers together to, once again, explore the future of energy: a future that includes cold fusion.

Cold fusion had burst upon the world nearly two decades earlier and had long since been discredited by the mainstream scientific community. Yet today it still has a strong following, a core of true believers who think it will help humanity unleash unlimited power from fusing atoms. Plenty of reporters, government officials, and even scientists remain under its spell. The dream of unlimited energy through cold fusion is so powerful that for almost twenty years the faithful have been willing to risk ridicule and isolation to follow it.

The biggest scientific scandal of the twentieth century began on March 23, 1989. Two chemists at the University of Utah, Martin Fleischmann and Stanley Pons, told the world that they had tamed the power of fusion energy at room temperature, bottling up a miniature star in a little hunk of metal. The university’s press release was full of enthusiasm:

SALT LAKE CITY—Two scientists have successfully created a sustained nuclear fusion reaction at room temperature in a chemistry laboratory at the University of Utah. The breakthrough means the world may someday rely on fusion for a clean, virtually inexhaustible source of energy.

At the press conference, the president of the university, Chase Peterson, pronounced that the scientists’ discovery “ranks right up there with fire, with cultivation of plants, and with electricity.” Yet such a monumental achievement came in a small and homely package. When Pons and Fleischmann displayed slides of their “reactor,” goggle-eyed reporters were stunned. The apparatus was little more than a small glass beaker mounted in a dishpan. The claim rattled around the globe in a matter of hours, astonishing physicists and igniting a tremendous controversy. Over the next few weeks, skeptics expressed graver and graver doubts about the Utah chemists’ claims, but other laboratories seemed to confirm their findings: in Utah, Georgia, Texas, Italy, Hungary, the Soviet Union, and India. The story of cold fusion quickly became a knotty mess that, decades later, has yet to be untangled.

Most physicists were immediately skeptical of the chemists’ claim, and it is easy to understand why. Pons and Fleischmann were stating that they had caused deuterium nuclei to fuse in a little jar at room temperature. This seemed to contradict everything that physicists knew about nuclear fusion. Because the positively charged deuterium nuclei must slam into each other at very high speeds to fuse, it means that fusion tends to occur only when the deuterium is at a very high temperature and high pressure. This, of course, was why fusion scientists were spending hundreds of millions of dollars on lasers and magnets to heat and confine deuterium plasmas.

Pons and Fleischmann’s setup was supposedly making an end run around physics’ requirements for fusion. There was no attempt to heat the deuterium to millions of degrees or to compress it to high densities. The chemists merely took a little rod of palladium metal, plopped it in a jar full of deuterium-enriched water, and ran an electric current through it. Somehow, without the benefit of high temperature and high pressure, the deuterium atoms were fusing inside that metal.

Though cold fusion seemed ridiculous, physicists could not dismiss the idea out of hand. It was possible, if unlikely, that palladium metal could somehow force the deuterium nuclei into contact. Pons and Fleischmann could possibly have found a new and fortuitous physical effect that nobody had anticipated. It had happened before. In fact, it had happened before to Fleischmann.

In 1989, Fleischmann was a well-respected English chemist. He had been a key player in the field of electrochemistry, the study of chemical reactions that occur because of the influence of electric currents. He had made his name, in part, by discovering a useful physical effect that nobody had predicted—or, at first, believed. In the early 1970s, he used lasers to detect the presence of a minute amount of a chemical on a piece of silver, even though conventional wisdom said that his results were impossible. The chemical should have been all but undetectable by the technique he used. But Fleischmann was correct; he had done the seemingly impossible. He had unwittingly discovered an effect that would be called surface-enhanced Raman scattering, a phenomenon that is now used in a variety of sensitive chemical detectors. Conventional wisdom was wrong and Fleischmann was right.

The scientific community soon rewarded Fleischmann for his discovery. In the mid-1980s, he was made a Fellow of the Royal Society, the highest honor that Britain bestows upon its scientists. By the late 1980s, his reputation made him welcome at scientific institutions around the world. He spent most of his time hopping between laboratories at his home university in Southampton, the Harwell laboratory (of ZETA fame), and a lab at the University of Utah.

Stanley Pons was the chair of the University of Utah’s chemistry department, and the two had a long history together. Fleischmann had taken the younger Pons under his wing in the mid-1970s when Pons was at Southampton. Long after Pons moved back to the States the two kept working together. Fleischmann, the elder statesman, and Pons, the eager young experimentalist, made a good team, producing an enormous amount of research. Pons was particularly prolific. By the late 1980s, he was publishing several dozen papers per year. This was a huge output, and it could be argued that the frantic pace led to careless work. Indeed, over the years, Pons and Fleischmann had published some papers that seemed ludicrous—such as one that involved highly unlikely reactions of nonreactive gases—but the two still maintained a good reputation. This is part of the reason that cold fusion got so much attention. Pons and Fleischmann were established scientists; they were not no-name amateurs like Ronald Richter had been. So when they announced their cold-fusion results in 1989, even skeptical physicists took the claim seriously.

The cold-fusion experiment was deceptively simple. At the heart of each “reactor” was a rod or a sheet made of palladium. Palladium is a whitish metal that shares numerous properties with platinum and nickel. Oddly, it is able to soak up enormous volumes of hydrogen—the tiny hydrogen atoms nestle between the atoms of palladium—so researchers had been studying the metal in hopes of coming up with a method for storing hydrogen in fuel cells.

Pons and Fleischmann had long been intrigued by this hydrogen-sponging behavior. They mused about it—talking while driving across Texas, talking while hiking along a canyon—wondering aloud about what was happening to the hydrogen that was crammed inside the palladium. Perhaps the hydrogens were very crowded in the small spaces between the palladium atoms. Perhaps those spaces were so crowded that the hydrogen atoms were bumping into each other with great force. Perhaps, if the hydrogen was replaced with deuterium... It was a crazy idea, but it just might work. If the pressures inside a palladium cage were high enough, they might just induce fusion in a way that a laser cage or a magnet cage could not. Sitting in Pons’s kitchen, the two devised an experiment to discover whether palladium fusion was possible. No law of nature said it was impossible to induce fusion inside a metal cage. It was worth a try, anyhow.

At first, they spent their own money, about $100,000 for the first crude experiments. “Stan and I thought this experiment was so stupid we financed it ourselves,” Fleischmann said at the press conference. But by scientific standards, their experimental setup was not that expensive, so it was a worthwhile risk to try, even on their own dime. Sometime in 1984, at least according to their own timeline, they took a chunk of palladium and set it in heavy water, water whose two hydrogen atoms are replaced with deuterium. To the water they added a salt containing lithium and deuterium. Then they stuck in a platinum wire and hooked it and the palladium up to a battery. They hoped that over time the current would cause deuterium to seep into the palladium, where the deuteriums would then begin to fuse. But when Pons and Fleischmann started the experiments, nothing happened. Then, one day, they cranked up the juice and left for the evening. Fleischmann told the Wall Street Journal what happened next:

Sometime during the night the palladium cube suddenly heated up to the point where some of it vaporized, blowing the apparatus apart, damaging a laboratory hood and burning the floor. “It was a nice mess,” Mr. Pons said. A check of the laboratory the next day with a radiation counter indicated radioactivity levels three times higher than the normal background levels, apparently the result of a sudden spray of neutrons.52

Pons and Fleischmann took this as a clear sign of fusion. Only a fusion reaction, they reasoned, could vaporize a hunk of metal like that. Mere chemistry could not explain the heat, so that meant something else was going on.

Their crazy hunch had paid off. Pons and Fleischmann felt they had made a momentous discovery. As they continued their research, they tried to keep it secret, letting only a few people into their confidence. But by the late 1980s, they were running out of money, so they started applying for outside funding. The first place Pons turned to was the Office of Naval Research; the ONR was already funding him to the tune of $300,000 per year for other work. But the ONR passed. Next up was the Department of Energy. Its Division of Advanced Energy Projects—a group that gives seed money to highly speculative research—was interested. But to award Pons and Fleischmann a grant, the department had to get the application peer reviewed; it had to send the chemists’ proposal to other scientists to get their opinions. (Scientific grant proposals, like scientific papers, tend to get accepted only after peer review.) One of the peers who reviewed Pons and Fleischmann’s proposal was a physicist at Brigham Young University, Steven Jones. As soon as Jones got a copy, all hell broke loose.

Jones was a natural choice for a reviewer. He had long been interested in fusion, particularly fusion under unusual conditions. In the late 1970s, while working at a Department of Energy facility in Idaho, he became intrigued by a bizarre phenomenon discovered by Luis Alvarez—the Oppenheimer critic—in 1956. Alvarez was using a device known as a bubble chamber to study particle interactions; when a particle zipped through the chamber, it would leave a trail of bubbles behind, which allowed physicists to see how particles behaved. He discovered some curious tracks—they had gaps in them—that didn’t seem to make sense. He and his group visited Edward Teller’s home to talk about the phenomenon, and after an “interesting discussion” Alvarez and Teller realized that the mysterious tracks were the sign of nuclear fusion between a hydrogen and a deuterium.

How could this be? Alvarez’s bubble chamber was extremely chilly—not far from absolute zero, in fact. How could the cold, slow-moving deuterium and hydrogen possibly have enough energy to overcome their mutual repulsion and fuse? The secret was a subatomic particle known as the muon. The muon is almost exactly like the electron, but it is some two hundred times heavier than its sibling. Like the electron, it carries a negative charge. And like the electron, it can be captured by a proton to make a hydrogen atom. But this weird muon-hydrogen object is considerably different from ordinary hydrogen. It is more massive—and it is tinier. The muon’s extra mass means that it is held much closer to the nucleus than an electron is. Because the muon is held so close to the nucleus, these hydrogen atoms are considerably smaller than ordinary hydrogen atoms. Thus when a small muon-hydrogen atom collides with another atom, the two nuclei are much closer together than they would ordinarily be. The muon, wrote Alvarez, “in effect, confines the two nuclei in a small box.” Confined in that box, the two nuclei are much more likely to strike each other and fuse.53


MUON-CATALYZED FUSION: Ordinary atoms have large electron clouds (left) that make it hard for the nuclei to get close enough together to fuse. Replace the electrons with muons (right) and the muon cloud is much smaller; nuclei get together much more easily and are able to fuse at relatively low temperatures.

Muon-catalyzed fusion, as it came to be known, really was room-temperature fusion. If scientists could somehow replace the electrons in a jar full of hydrogen with muons, they would be able to get a fusion reaction without the need for immense heat and pressure; the muon hydrogens would fuse by virtue of their smaller size. Unfortunately, muons are hard to come by. To get them in large numbers, scientists need to build a particle accelerator. Accelerators consume lots of energy, and they are not very efficient.

Even if scientists found an efficient way of producing muons, the muons they would create would last only a few microseconds before decaying into electrons and a handful of other particles. If in those moments the scientists then successfully shot one of those muons into a cloud of hydrogen, they might get lucky and induce two atoms to fuse into helium, but what then? The muon can get trapped in the helium atom, and then it is useless. It will quickly decay without helping any other atoms to fuse. If every available muon catalyzed only one atomic fusion, then there is no hope of producing energy; merely creating the muons and delivering them would consume more energy than was released by that single fusion. If, on the other hand, a muon can escape the clutches of the helium nucleus, then helps another fusion to occur, escapes, helps another fusion, and so forth, then muon-catalyzed fusion would not be hopeless after all. If every muon induces a few hundred fusions before decaying, then perhaps it would be possible to generate more energy than the amount used to create the particles in the first place. Muon-catalyzed fusion would achieve breakeven.

When Alvarez first saw the phenomenon in deuterium, he was extremely excited. “We had a short but exhilarating experience when we thought we had solved all of the fuel problems of mankind,” he said in his Nobel Lecture a decade later. “While everyone else had been trying to solve the problem by heating hydrogen plasmas to millions of degrees, we had apparently stumbled on the solution, involving very low temperatures instead.” Unfortunately, as Alvarez’s team performed more detailed calculations, they concluded that the muons quickly got stuck in helium and decayed, and that muon-catalyzed fusion of deuterium would never lead to a practical energy source. Deuterium-tritium mixtures might fare a bit better, but the outlook was pretty grim.

Jones was more sanguine about the possibility of using muons to generate energy than Alvarez had been, and he sought to prove that muon-catalyzed fusion could, indeed, solve the world’s energy problems. With grants from the Department of Energy—the same Division of Advanced Energy Projects that Pons and Fleischmann were soon to get involved with—Jones used an accelerator at Los Alamos to zap deuterium-tritium mixtures with muons. Theory predicted that as the deuterium-tritium mixture got denser, the muon would interact with more atoms before decaying—but that this effect would be very slight. Much to his surprise, when Jones increased the density of his deuterium-tritium mixtures, he discovered that the number of interactions skyrocketed into the hundreds. By 1986, he was claiming to see 150 fusions per muon and predicted that it would be possible to get even more.

If it was true, muon-catalyzed fusion might really become an energy source. In a paper in the prestigious peer-reviewed journal Nature, Jones waxed enthusiastic about muon fusion, especially when using a mixture of deuterium and tritium as fuel: “each muon may catalyze hundreds of d-t fusion reactions, releasing a great deal of fusion energy,” he wrote, arguing that “muon-catalyzed fusion is an idea whose time has come—again.” (He also noted that muon-catalyzed fusion didn’t work at high temperatures as conventional fusion did: “The term ‘cold fusion’ is therefore quite appropriate for the process,” he wrote.)

Jones trumpeted the potential of muon-catalyzed fusion in seminars, lectures, and papers, and cowrote a Scientific American article about it in 1987. “It is now conceivable that cold fusion may become an economically viable method of generating energy,” the article read, and it even included schematics for a “commercial cold-fusion reactor.”

Unfortunately, Jones was wrong. His results were not only inconsistent with theory but also with what other groups were finding. A Swiss team, for example, performing similar experiments, was not seeing the same density effects that Jones was observing. Their muons got stuck in helium atoms fairly rapidly, as expected. Instead of seeing hundreds of fusions per muon, they were seeing tens. Muon-catalyzed fusion would never lead to breakeven at this rate. And as the Department of Energy’s money for muon-catalyzed fusion began to run out—the Division of Advanced Energy Projects had already spent more than $2 million—prospects for muon-catalyzed fusion began to dim. An outside review by JASON, a secretive group of scientists who advise the government on all matters scientific, put the last nail in the coffin: muon-catalyzed fusion wasn’t worth pursuing, at least as a path to energy. Muon-catalyzed fusion was dead. But cold fusion wasn’t.

Around the time that Jones’s 1986 Nature paper came out, an astronomer and physicist, E. Paul Palmer, attended one of Jones’s muon-catalyzed-fusion seminars. The idea of fusion at low temperatures struck Palmer as the possible answer to a conundrum. Palmer was a rogue physicist; he had apparently come to the conclusion that much of what geophysicists believe about the Earth is “a bunch of baloney,” and was hard at work formulating alternative geological theories. The conventional wisdom that the Earth’s interior is warmed by the decay of heavy elements like uranium struck him as being wrong. And the fact that there is helium-3 in the Earth’s crust seemed to him to be evidence of fusion.54

Most physicists would have dismissed Palmer as a crank, but Jones did not. After all, he himself had seen how fusion can happen at low temperatures; perhaps there was some other substance besides muons that could induce low-temperature fusion. Perhaps metals—nickel? platinum? palladium?—could trap hydrogen atoms and force them to fuse. It was cold fusion of another sort. Jones’s initial experiments didn’t turn up much, despite some halting attempts to capture gamma rays coming from fusion in metal samples. The concept of cold fusion remained on the back burner until the day that Jones received Pons and Fleischmann’s grant application in 1988.

There are many different versions of precisely what happened after Jones read the proposal, but there is little doubt that it sparked a race that grew more frantic as each week passed. Pons and Fleischmann’s work had much in common with Jones’s. Both were hoping to trap deuterium in a hunk of metal—particularly palladium—and force it to fuse somehow. If money was to be made from cold fusion (and if Pons and Fleischmann were correct, cold fusion would be a moneymaker unlike almost any other invention), only the patent holders would see huge benefits. Only the people who discovered cold fusion would be able to patent the process. And only the people to go public with their work first would be hailed as the discoverers. All the money, glory, and power that might come from the discovery of cold fusion hinged upon being the first to go public. The first to cross the finish line would be hailed as the savior of mankind, as the discoverer of an eternal spring of unlimited energy. The second would become a mere footnote.

Jones, Pons, and Fleischmann had entered an ever-quickening race to run experiments, prove the existence of cold fusion, write a paper for a peer-reviewed journal, and publish it. By early 1989, the competitors had agreed to submit simultaneous papers to Nature, so they could all cross the finish line simultaneously. But in a climate of increasing mistrust and antagonism, Pons and Fleischmann jumped the gun. They submitted their paper to the Journal of Electroanalytical Chemistry on March 10, and within two weeks they were in front of the microphones, touting their achievement to the world—despite the improbability of what they had found. “Stan and I often talk of doing impossible experiments,” Fleischmann said in the official University of Utah press release about cold fusion. “We each have a good track record of getting them to work.”

In truth, Pons and Fleischmann did not have the grounds for such hubris. Though they exuded confidence at the March 23 press conference, they already should have known that their data did not add up. They had several lines of evidence for the claim that they had achieved nuclear fusion in their tiny little beakers—but these lines contradicted one another.

The strongest line of evidence, as far as the chemists were concerned, was heat. When Pons and Fleischmann measured the temperature of their apparatus, their electrochemical “cell,” they discovered that the palladium was warming it up ever so slightly. Of course, many things can warm up a cell—the electricity they were running through the cell, for example, was certainly contributing to the warming—but Pons and Fleischmann argued that the energy coming from the palladium was considerably more than what they added in the form of electricity. According to Pons, an inch-long and quarter-inch-thick palladium wire brought water to a boil within minutes, and for every watt of power the scientists put in, four watts came out. More energy out than in implies a reaction of some sort. Since the reaction kept going and going, reportedly for more than one hundred hours, the amount of energy coming from the cell was too large to be explained by a chemical reaction. It was like Marie Curie’s hunk of radium; mere chemical processes couldn’t seem to explain the heat coming from the cell. To Pons and Fleischmann, this was a smoking gun of a nuclear reaction: fusion.

This sort of evidence would not convince most physicists. To them, the only way to prove that you have achieved fusion is, naturally enough, to show that you are producing some of the by-products of fusion. With deuterium-deuterium fusion, there are a few unambiguous signals that a reaction has taken place.

When two deuterium nuclei fuse (d + d), they stick together for a tiny fraction of a second: two protons and two neutrons in a quivering, energetic bundle. Because the conglomerate is so energetic, it cannot hold together completely. One particle is going to pop off and carry away some excess energy. That means either a proton (p) is going to pop off, leaving behind a tritium particle (t) with one proton and two neutrons,

d + d → p + t,

or a neutron (n) is going to pop off, leaving behind a helium-3 nucleus with two protons and one neutron,

d + d → n + 3He.

These two branches of the reaction are roughly equally likely: half of the time that you fuse two deuterium nuclei, you will get a proton and a tritium nucleus; the other half, a neutron and a helium-3 nucleus.

Free-floating protons are relatively common, but free-floating neutrons are rarer, as are tritium and helium-3. So if you think that you’ve got deuterium-deuterium fusion going on in your laboratory, the best way to convince other people is to demonstrate that you are making tritium, helium-3, and neutrons. The neutrons, arguably, should be the easiest to detect. Neutrons penetrate matter very easily, so any neutrons produced by the reaction would quickly fly out through the walls of the beaker and into the walls surrounding the room. A neutron detector need only be placed next to the reactor vessel and it would certainly pick up some of these particles. There are neutrons from other sources—cosmic rays, for example, often produce them in the lab—but luckily the neutrons from deuterium-deuterium fusion have a specific energy.

The fusion of two deuterium nuclei produces a fixed amount of energy: the energy that the particles get from rolling one step down the fusion hill toward the valley of iron. That energy is carried away by the particles created by the reaction. For the branch of the reaction that creates a neutron and a helium-3, the total energy released—in the units that nuclear physicists like to use—is nearly 3.3 million electron volts (3.3 MeV).55 That energy is split between the two particles. Furthermore, the heavier particle gets less energy, while the lighter particle gets more.56 In this particular case, the heavier helium-3 gets about 0.82 MeV while the lighter neutron gets 2.45 MeV. Every time. So, if you find neutrons flying about with 2.45 MeV of energy, it is a really good sign that you are seeing deuterium-deuterium fusion.

Before the press conference, Pons, Fleischmann, and Jones had all been looking for neutrons. Jones’s team thought it had found a few coming from their experiments—a small, unimpressive bump in a graph. The bump didn’t represent a solid discovery; after months of running the experiment, Jones claimed to see roughly twenty neutrons in the 2.45 MeV range. Unimpressive, yes, but Jones considered them a solid sign of fusion reactions. That these neutrons were there at all “provides strong evidence that room-temperature nuclear fusion is occurring at a low rate” in the experiment, Jones later wrote. Pons and Fleischmann had been looking, too, but they were having even less luck. Fleischmann used his Harwell laboratory connections to get a neutron detector, but when they put it near the cell, it didn’t show any neutrons. This was a huge problem, because for every watt of power the cell produced, about a trillion neutrons should have been flying out every second. At the power levels Pons and Fleischmann were seeing, their beaker should have been emitting dangerous and easily detectable levels of radioactivity. But it wasn’t.

As the days of fruitless searching turned into weeks and the time of the press conference drew closer, Pons and Fleischmann evidently became increasingly concerned. They sent a cell to Harwell to be analyzed with a much more sensitive machine, but the analysis required some time. In the interim, they invited a person from the University of Utah’s radiation safety office to the lab to measure gamma rays coming from the cell. The gamma rays, they hoped, would provide an indirect measure of neutrons: when a 2.45 MeV neutron strikes a hydrogen in the water surrounding the palladium, it will emit a gamma ray, again with a very specific energy: 2.22 MeV. The safety officer set up a gamma-ray detector for a few days and collected data. Apparently, Pons and Fleischmann were thrilled with what the machine found, because shortly after analyzing the data, they submitted their paper to the Journal of Electroanalytical Chemistry and Utah began setting up the press conference.

When Pons and Fleischmann announced their discovery to the world on March 23, 1989, Utahans immediately sought to capitalize on the news. The day after the press conference, Governor Norman Bangerter announced that he would call a special session of the legislature to appropriate $5 million for cold-fusion research. The appropriations bill passed overwhelmingly. The money would help establish a National Institute for Cold Fusion at Utah. Soon cold-fusion lobbyists would be marching up Capitol Hill seeking tens of millions of dollars, promising that Japan would steal cold-fusion momentum away from the United States if the nation didn’t invest immediately.

The scientific community was of two minds. Some were optimistic. Edward Teller called to congratulate Pons and Fleischmann and started a Livermore task force to look into cold fusion. Others, including the University of Utah’s own physics department, which had been kept in the dark by the chemists, were extremely wary of the results. No matter the level of skepticism, every scientist wanted details about the experiments, and there were few to be had.

Pons and Fleischmann had held their press conference before publishing their data and their methods. This was very unusual. Scientists communicate through scientific presentations and papers, not through press releases and press conferences. On the relatively rare occasions that a scientific result is important enough to merit a press event, it is usually held at the same moment that the data are revealed to the scientific community through a paper or in a presentation. With the cold-fusion announcement, the paper was missing. No data were available, and scientists had only the scantest details about how Pons and Fleischmann performed their experiment.

Physicists and chemists around the world were frantic; without any data, they had little way to judge whether Pons and Fleischmann were going to solve the world’s energy crisis—or whether they were merely full of it. The suspense would last for months.

In the first few days after the press conference, the news seemed good for the two chemists. The press soon learned about Jones’s work, and while Jones was much less bold in claiming to generate energy, he, too, was claiming to see fusion in palladium. It appeared to be an outside confirmation of the Pons and Fleischmann claim. No longer could cold fusion be considered the delusion of a single laboratory. As other labs rushed to replicate the experiments, news began to filter in about other confirmations. By early April, researchers at Texas A&M were seeing excess heat in palladium cells; Georgia Tech was seeing neutrons. The University of Washington was seeing tritium. These reports all seemed to provide solid support for cold fusion.

Privately, though, Pons and Fleischmann were getting bad news. Two days before the press conference, Fleischmann learned that even the hypersensitive neutron detector at Harwell wasn’t picking up anything. There was no trace of the trillions and trillions of neutrons that should have been flowing from the palladium. Fleischmann apparently explained the discrepancy away, noting that a number of cells that he and Pons had built didn’t work; perhaps Harwell was using a defunct cell. It was not a convincing explanation, but it would have to do. But worse news was to come, news that was harder to dismiss.

Four days after the press conference, Pons and Fleischmann began to reveal details of the experiments to some of their colleagues. Fleischmann visited the Harwell lab and gave a seminar on cold fusion. The room was packed with scientists, including some very esteemed ones who had been working with neutrons and gamma rays for years. When Fleischmann showed his gamma-ray measurements to the Harwell crowd, they were shocked. A typical gamma-ray spectrum is a bumpy graph that shows a series of peaks and troughs at various energies, reflecting natural background sources of gamma radiation (such as the decay of radioactive elements). Gamma rays from deuterium should have occurred at 2.22 MeV, right between a gentle peak caused by the decay of radioactive bismuth at 2.20 MeV and a much larger one caused by the decay of radioactive thallium at 2.61 MeV. Instead, Fleischmann showed a ratty little plot that displayed only a single peak, without any nearby landmarks to confirm what the peak really was. Worse yet, Fleischmann was claiming that he was seeing gamma rays that had 2.5 MeV of energy, not the 2.22 MeV that a fusion neutron should emit when it strikes a tub of water.57 The peak was in entirely the wrong place. The director of Harwell turned to Fleischmann and said, simply, “It’s wrong.” Fleischmann wilted. The next day, physicists at the University of Utah—who had been given a preprint of the upcoming cold-fusion paper—told Pons precisely the same thing.

What was going on? Why was the gamma-ray peak in the wrong place? To all appearances, Fleischmann and Pons dismissed the problem, attributing it to a minor error in calculation. When their paper finally came out in the Journal of Electroanalytical Chemistry, the lone peak was sitting in precisely the right spot: 2.22 MeV. Perhaps they told the editors about the “error” and corrected it before it was published. However, Pons and Fleischmann apparently failed to spot one occurrence of the old, incorrect value of 2.5 MeV in the manuscript: in the equation where they describe the interaction between a neutron and a hydrogen atom, they declare that the gamma ray would be at 2.5 MeV, not the 2.22 MeV shown by the spectrum.

The problem of the moving peak wasn’t public yet, though it soon would be. In the days after the press conference, scientists, still hungry for details about the Pons and Fleischmann experiments, were taking desperate measures. Physicists apparently hacked into Pons’s e-mail account looking for clues. One scientist spooked Utah chemists by loitering outside the Pons-Fleischmann lab. A team of plasma physicists at the Massachusetts Institute of Technology resorted to scouring television footage of the lab instruments for data. They succeeded: a broadcast on Utah’s KSL-TV showed the entire gamma-ray spectrum, clearly showing the bismuth and thallium peaks. Using that information, they deduced that Pons and Fleischmann’s peak had to be near 2.5 MeV as originally presented during the seminar at Harwell, not at 2.22 MeV, as reported in the journal article. Furthermore, even without the television footage, the MIT researchers showed that the Pons-Fleischmann peak was the wrong shape—too narrow and without a distinctive shoulder—for one produced by neutron-created gamma rays. It was a devastating critique, and when Pons and Fleischmann responded to the MIT criticisms in June, the peak had somehow moved back to 2.5 MeV. By that time, most mainstream physicists had already decided that cold fusion was bunk.

However, in late March and early April, the question was still open. While the physicists were still trying to figure out precisely what Pons and Fleischmann had done, the scientific and political communities were dividing into believers and nonbelievers. The biggest critics of cold fusion were plasma physicists. These were the people who knew a lot about the difficulty of achieving fusion, and who had learned through painful experience how neutrons can fool you. They were also the people who had the most to lose if cold fusion worked. Cold-fusion supporters began to sense a conspiracy to attack the Pons-Fleischmann discovery. “There is big money in hot fusion, and if we turn out to be right, hot fusion, I guess, goes away,” said the University of Utah president, Chase Peterson. “That represents entire careers, and orthodontia, and college educations for whole families of people that have lived off that dole.” In the eyes of supporters, the critics of cold fusion, largely on the East and West Coasts, threatened with obsolescence, were striking at the discoverers of cold fusion in Utah, in the heartland. The university’s vice president for research, James Brophy, supported this view: “The black hats, such as they were, came from the hot fusion community.... There was certainly an organized campaign to discredit cold fusion based on the possibility of losing funding.”

On the other side, anti-cold-fusion physicists felt that they were simply trying to investigate a very important scientific claim; after all, the whole scientific method relies on the vigilance of the scientific community. Even skeptical fusion scientists, such as Richard Garwin, who helped turn the Teller-Ulam design into a testable bomb, investigated the Pons and Fleischmann claims with an open mind. “Within the next few weeks, experiments will surely show whether cold fusion is taking place; if so it will teach us much besides humility,” he wrote in April 1989, even though he himself “bet against its confirmation.” But the lack of details from Pons and Fleischmann was frustrating physicists who were trying to confirm the cold-fusion experiments using data gleaned from television broadcasts and newspaper photographs.

Throughout April, the pro-cold-fusion groups had the momentum. Though MIT researchers had reported that they were unable to replicate the experiments in mid-April, there were the confirmatory results on the other side: Jones, Georgia Tech’s neutrons, and Texas A&M’s heat. When Pons spoke at a hastily cobbled-together special session at the American Chemical Society meeting on April 12, the mood was enthusiastic. The crowd was extremely sympathetic, if for no other reason than the hope that fellowchemists would succeed where physicists had failed. Physicists had spent years trying to harness the power of fusion, noted the American Chemical Society’s president in his introduction to Pons’s presentation. “Now it appears that chemists may have come to the rescue,” he said, triggering applause and laughter. But Pons’s presentation generated serious doubts in the audience. Most troubling was when he fielded questions about his control experiments.

If Pons and Fleischmann were actually seeing fusion in a test tube, they should have been able to show that the effect was not due to a quirk in their apparatus. To do this, they needed to run a control experiment—one that was almost identical to the fusion cell, but subtly different in a way that would prevent fusion from occurring. Only then could they prove that fusion was really responsible for the excess heat and other effects they were seeing. In the Pons and Fleischmann case, the obvious control experiment was to run an identical experiment with ordinary water rather than heavy, deuterium-laden water. If deuterium-deuterium fusion was responsible for the excess heat, getting rid of the deuterium and replacing it with ordinary hydrogen should end the fusion and turn the heating off. They then could be assured that the heat had something to do with the deuterium in the beaker. Doing this was absolutely necessary if Pons and Fleischmann were to prove to other scientists that they were not deluding themselves.

Indeed, this sort of control experiment is what budding scientists are taught to do in freshman science classes, and everybody expected it from such established scientists as Pons and Fleischmann—not to have run one would seem absurd. But when questioned about why Pons had not published any control experiments, his reply was cryptic. “We do not get the total blank experiment that we expected,” he said. Was he really implying that fusion occurred in the absence of deuterium? This seemed ridiculous even if you accepted that a miracle occurred inside the palladium cell.

At the very least, the scientific community wanted to see the results of those control experiments, but neither the Journal of Electroanalytical Chemistry paper nor the one that Pons and Fleischmann submitted to Nature had any sign of such a control. “How is this astounding oversight to be explained to students. . . . And how should the neglect be explained to the world at large?” asked John Maddox, the editor ofNature. This was poor science at best, although it was beginning to look much worse than that.

After Nature received the twin manuscripts from Pons and Fleischmann and Jones, the journal sent them out for peer review. The reviewers made their suggestions for changes and additional work, and these were sent back to the authors. Jones complied with the reviewers’ requests, but Pons and Fleischmann refused to do so, claiming they were too busy with other “urgent work.” Though Nature emphasized that this did not make the Pons-Fleischmann paper any less believable than Jones’s, it was still a deep blow to the team’s credibility. Many physicists were beginning to smell a rat, and the rhetoric grew more heated.

The press ratcheted up the rhetoric, too. The Wall Street Journal had been enthusiastic about cold fusion since the very beginning. Its reporter, Jerry Bishop, had written a page-1 story covering the Pons and Fleischmann press conference in Utah, and the Journal had become the go-to place for optimistic news about cold-fusion developments. When criticism of Pons and Fleischmann began to bubble through the press, especially the liberal press, the Journal struck back. In April, the New Republic wrote a piece blasting the scientists for releasing the experimental results “in a way that maximized publicity but defied the conventions that are supposed to ensure the reliability of scientific information.” The Wall Street Journal replied with a caustic editorial linking criticism of cold fusion with other complaints of East Coast liberals: “The pace of scientific advance is sometimes hard to discern amid the unending wail about trade deficits, food chemicals, the ozone layer, the greenhouse effect, animal rights or political ethics,” it declared. “Even within the scientific enterprise, the creative impulse of a Fleischmann and Pons must contend today with what might be called ‘Academy mentality.’”

The clash between the pro-cold-fusion and anti-cold-fusion camps was becoming an ugly fight. It was also getting more confused by the minute.

The day after Pons’s speech at the American Chemical Society, the researchers at Georgia Tech, who had provided evidence in favor of cold fusion, recanted. They weren’t seeing neutrons after all. They had made an embarrassing mistake: their detector had been picking up temperature fluctuations rather than neutrons. The Texas A&M scientists also backed off their claims a bit; the amount of excess heat they were seeing had dropped dramatically. Excess heat was still evidence in favor of cold fusion, but the change undermined confidence in the A&M results. Then there was the bizarre claim that Pons and Fleischmann had found helium in their palladium electrodes. In mid-April, the Utah chemists told the press—again, without a formal paper supporting their claims—that their cells were producing helium. But they were claiming the production of helium-4, not helium-3.

If deuterium-deuterium fusion is happening, it is producing helium-3 at a quick rate. Since the branch of the reaction

d + d → n + 3He

happens roughly half the time, one helium-3 should be produced for every two fusions that occur. Helium-3, not helium-4. However, once in a long while—once in about ten million fusions—an unusual reaction does occur. Two deuterium nuclei stick together, producing a helium-4 that is quivering with energy. Usually, the helium-4 can’t hold together; either a neutron or a proton pops off. Rarely, though, the helium-4 sheds the excess energy in another way: it emits an enormously energetic gamma ray (with about 24 MeV), and the helium-4 nucleus survives. So the reaction

d + d → 4He

does exist. It is just very rare.

Pons and Fleischmann, backed by the theoretical calculations of two other Utah chemists, were suggesting that this third, rare branch of the deuterium-deuterium fusion reaction had somehow become dominant, suppressing not only the branch that produced tritium but also the branch that produced neutrons. It would explain why the tritium and neutron observations reported thus far were so iffy, and why nobody was spotting helium-3. But physicists weren’t buying it. Not only would suppressing the ordinary mechanisms of deuterium-deuterium fusion in favor of this rare branch require a miracle of sorts (nothing like this had been theorized, much less been seen before), but also scientists could point to numerous cases of researchers’ being fooled by helium-4 in the atmosphere. In fact, there was a notorious case from the 1920s when two German researchers, Fritz Paneth and Kurt Peters, convinced themselves that a palladium catalyst was turning hydrogen into helium. Instead, the helium they were detecting was contamination from the atmosphere. The case was so similar to the Pons-Fleischmann episode (down to the type of metal used by the experimenters) that it seemed ridiculous for Pons and Fleischmann to rely heavily on helium-4 production as support for their “discovery.”

Yet even as the criticism mounted, the researchers betrayed little doubt about their work. On April 26, Pons and Fleischmann, along with Chase Peterson, Steven Jones, and other cold-fusion backers, testified in front of a congressional committee. At stake was a bid to get the federal government to chip in $25 million to cold-fusion research. Pons said he and Fleischmann were “sure as sure can be” that they had achieved fusion, and Fleischmann said he had confirmation of their results from other groups. Even though an MIT physicist urged caution, dubbing the cold-fusion fiasco as “The Case of the Missing Controls,” the warnings seemed to fall on deaf ears. Or no ears. The physicist Robert Park noted that “By the time the hearings got around to the skeptics, only two committee members remained, the television cameras were gone.”

The physics community was in an uproar. Pons and Fleischmann were too busy to revise their paper for Nature, too busy to respond to requests for clarification and information from skeptics, too busy to attend the upcoming American Physical Society (APS) meeting in Baltimore, but not too busy to hype their claims to Congress in hopes of grabbing $25 million of federal pork. The researchers were making ever more bizarre claims (such as the helium-4 detection) and getting increasingly defensive. In the view of most physicists, the pair had been evasive, self-contradictory, and perhaps less than honest. The mood in the physics community was poisonous. At the Baltimore meeting on May 1, it all erupted.

Neither Pons nor Fleischmann showed up, but Jones, who was not earning the same ire as the other two, was there. Jones was less of a pariah because he had revised his paper for Nature, had reported on control experiments with water, and was making much more modest claims than Pons and Fleischmann. And of course, he was appearing before a group of his peers, defending his research. Jones kicked off the session on cold fusion and received a “polite but generally sceptical reception,” according to a Nature reporter in attendance. Pons and Fleischmann were the main targets. First, Steve Koonin, a fusion scientist at the California Institute of Technology, rubbished the claims of cold fusion—and then he attacked the scientists who made them. “We’re suffering from the incompetence and delusions of Professors Pons and Fleischmann,” he told the applauding audience. Nathan Lewis, a Caltech chemist, then took up where Koonin left off. He accused Pons and Fleischmann of not stirring the liquid in the cells, allowing hot liquid to accumulate in spots and throwing off their heat calculations. “We asked Pons if he stirred,” said Lewis. “No answer.” In his rapid-fire presentation, Lewis devastated the Pons and Fleischmann claims. If there was any cold fusion at all—an unlikely possibility—it certainly wasn’t the dramatic stuff that the Utah chemists were seeing.

It was a mortal blow. To most mainstream scientists, cold fusion was dead. The New York Times’s obituary was a piece entitled “Physicists Debunk Claim of a New Kind of Fusion.” Even the Wall Street Journal admitted that the session had been a “devastating” attack on the Utah team’s credibility, but was less willing to give up hope for cold fusion. (Over the next few weeks, the stream of hopeful news—new confirmations and evidence in favor of cold fusion—continued gracing the pages of the Journal.) But to most scientists, cold fusion was well and truly dead, even though, as physicist Park noted, the corpse probably would “continue to twitch for a while.” (This was, as it turns out, an understatement.) It was dead to most politicians, too. White House chief of staff John Sununu abruptly cancelled a planned meeting with Pons and Fleischmann on May 4.

The outlook for cold fusion got progressively worse as skeptics piled on, and Pons and Fleischmann got more reclusive and more distant. They failed to attend a cold-fusion meeting later in May. They refused to release an analysis of helium in their palladium rods prepared by the rods’ supplier. They even seemed to undermine the research going on at the University of Utah.

Michael Salamon, a Utah physicist who had been running a gamma-ray detector in the Pons-Fleischmann lab, was encountering bizarre roadblocks; the only time that the cells were “working” seemed to be when his equipment was off line. When Salamon wrote a manuscript for Nature on his results—entirely negative—Pons’s lawyer threatened legal action. And, according to Hugo Rossi, the dean of the University of Utah’s College of Science, Pons and Fleischmann didn’t cooperate much with the National Cold Fusion Institute, which was established with the $5 million given by the Utah legislature. Speaking about a former Pons postdoc, Rossi explained, “I discovered after awhile that he had instructions from Pons to do nothing [but] set up fake experiments. I discovered this with the help of the assistants who were working for him. [One of them] told me, ‘You know, those tubes are running, and there are wires running from them, but they’re not hooked up to the computer. Data are not being gathered.’” Pons and Fleischmann lurched toward the fringes of science. But even as they faded from sight, their dream did not die entirely.

By the end of May, the mainstream scientific community was convinced that cold fusion was a delusion, and its discoverers, Pons and Fleischmann, were considered either colossally incompetent or patently dishonest. (When the story of the moving gamma-ray peak became widely known, the latter became more and more plausible.) The day after the congressional hearing in April, the Department of Energy asked a panel of scientists (including Koonin) to look into the cold-fusion claims. By the time the draft report came out in July, the verdict was no surprise: there was no convincing evidence for cold fusion. The final report, released in November, was a little more conciliatory, expressing sympathy for “modest support” for well-performed studies to tie up some of the loose ends. There were a lot of them.

Even though Pons and Fleischmann’s own work had been thoroughly debunked, a handful of experimenters still thought they had seen heat or tritium coming from palladium cells. Texas A&M’s John Bockris and Stanford’s Robert Huggins, for example, became staunch supporters of cold fusion based on their labs’ results. And, of course, there was Jones. The scientific community found flaws in all these studies. Jones’s own cells were shown not to be producing neutrons by a team of physicists led by Moshe Gai, a Yale professor. Huggins was criticized at the APS meeting by a fellow Stanford professor, Walter Meyerhof. Bockris’s lab was soon surrounded by intimations of academic fraud, which included spiking cells with tritium from a little bottle. Though the researchers were cleared by a Texas A&M panel, doubts lingered about the quality of their work. This was enough to convince most scientists that cold fusion was not worth any expense of time or effort.

Nevertheless, positive reports from increasingly sketchy research kept dribbling in. These persuaded some scientists, as well as a number of mainstream organizations, including the Electric Power Research Institute and the Stanford Research Institute, that there had to be something to cold fusion. (As late as October 1989, Edward Teller apparently was in favor of funding cold-fusion experiments.) Despite the scorn of most scientists, the research continued to receive money, although it was getting harder to find. University of Utah president Chase Peterson tried to keep the Cold Fusion Institute alive with a $500,000 infusion from his university’s research fund.58 And so the corpse of cold fusion continued to twitch. Part of what kept the cold-fusion dream alive was the sense of outrage over how Pons and Fleischmann had been treated by the physics community. The smackdown in May had had the air of a public lynching. In its wake, the climate in the physics community had turned from skepticism to scorn. Soon, any cold-fusion believer was ridiculed. It was unseemly, if understandable. A number of people leapt into the fray on the side of the underdogs. The Nobel laureate Julian Schwinger became a cold-fusion supporter and resigned from the American Physical Society in protest over the scientists’ poor treatment. Eugene Mallove, MIT’s chief science writer, quit his post after alleging that some of the anti-cold-fusion physicists at MIT were engaging in fraud. Mallove then started publishing Infinite Energy magazine, which boosted cold-fusion research even as it was getting pushed ever further to the fringes of science.

When Pons and Fleischmann quietly packed their bags and left for France, where a Japanese consortium had set up a cold-fusion research facility, they left behind a small community of true believers. These cold-fusion aficionados supported and encouraged each other, secure in the belief that a revolutionary idea was being crushed by the scientific establishment. There had been a miscarriage of science, they thought. Pons and Fleischmann had been run out of town by the very hot-fusion physicists who were going to lose their funding because of the chemists’ discovery.

Pons and Fleischmann continued their research long after the mainstream of science had dismissed cold fusion entirely and had come to consider the whole affair a tremendous embarrassment. The two went their separate ways in the mid-1990s, still insisting they were right, that they had seen excess energy in their palladium cells. The Japanese gave up on cold fusion in 1997, after having spent tens of millions of dollars without any concrete results. The following year, nearly a decade after the scientific community turned its back on the idea, the University of Utah stopped fighting for cold-fusion patents. They were more than $1 million in the hole for lawyer’s fees.

Steven Jones, too, was driven to the fringe. Though he kept his post at Brigham Young University, his research got increasingly bizarre. A devout Mormon, he tried to prove that Jesus Christ had visited Mesoamerica (he thought that marks on the hands of Mayan gods were evidence that Christ, with his stigmata, was their inspiration). Then, in 2006, he came out with a study that purported to prove that the World Trade Center had been demolished by explosives inside the building, not by the jets that struck from the outside. BYU initiated a review of the research, and Jones retired from the university shortly thereafter.

If Pons, Fleischmann, and Jones had been the only ones who supported cold fusion, the idea would have long since passed out of the public consciousness. But some serious-sounding scientists at some serious-sounding institutions were convinced that there had to be something to the cold-fusion claims. (Some modern-day cold-fusion work is being done by researchers at the Stanford Research Institute, at a few navy laboratories, and even at MIT.) Some mysterious events also lent credence to the cold-fusion conspiracy theories. In 1992, a researcher was killed in an explosion while performing a cold-fusion experiment, and in 2004, Mallove, the most outspoken proponent of the idea, was found on his driveway, beaten to death.

The cold-fusion movement also drew strength from the press. Reporters seem genetically predisposed to take the side of the underdog, and the cold-fusion-versus-big-science story certainly had one. Some journalists were true believers, and others just were offended by mainstream science’s treatment of the cold-fusion researchers. Their gripes came out as a slow and steady drumbeat. “These folks need a fair hearing,” said ABC News science correspondent Michael Guillen in 1994. In 1998, Wired’s Charles Platt suggested that ignoring new cold-fusion research might be “a colossal conspiracy of denial.” The Wall Street Journal returned to its cold-fusion roots in 2003 with a column by the esteemed science journalist Sharon Begley: “Cold fusion today is a prime example of pathological science, but not because its adherents are delusional.... The real pathology,” she wrote, “is the breakdown of the normal channels of scientific communication, with no scientists outside the tight-knit cold-fusion tribe bothering to scrutinize its claims.”

Mainstream physicists saw it differently, of course. Despite the fact that Pons and Fleischmann were claiming something extraordinary—ridiculous, even—the scientific community had scrutinized their claims. They found the Utah group’s work sloppy at best, and systematically demolished the chemists’ claims. Cold-fusion advocates had spent millions of dollars researching the phenomenon and still did not have a device that could reliably heat a cup of water for tea. The burden of proof, as always in science, is on the people who claim extraordinary things. It is their responsibility to perform an experiment so good that it forces the scientific community to abandon its prior beliefs.

This may be the scientific attitude, but it comes across as terribly arrogant, and that served to increase the power of the cold-fusion lobby. By 2004, the pressure had grown to the point that the Department of Energy felt it necessary to review whether cold fusion merited renewed funding. (The term cold fusion had been dropped in favor of the less-pejorative low-energy nuclear reactions.) The conclusions were much the same as they had been a decade and a half earlier. Yet the mere existence of the review was an indication of the power of the cold-fusion lobby. And the more that people tried to stomp on cold-fusion enthusiasts, the stronger the movement became.

The lure of cold fusion and the promise of unlimited, free energy is, itself, a source of power to be reckoned with. Patent examiner Thomas Valone has been under its spell for more than a decade. In 1998, after having worked at the patent office for a few years, he broadcast a plea for cold-fusion aficionados to join him in his line of work, according to Science magazine. “Valone called for ‘all able-bodied free energy technologists’ to ‘infiltrate’ the Patent Office”—presumably to benefit like-minded cold-fusion and free-energy enthusiasts seeking patents. Valone then attempted to organize what was to be called the First International Conference on Free Energy, which was to be held at the State Department. Mainstream physicists were appalled, including the American Physical Society’s Robert Park, who featured the conference in his acerbic weekly What’s New newsletter. “The speakers list for CoFE is certainly open minded; topics include: assisted nuclear reactions (a.k.a. cold fusion), sonoluminesence (a.k.a. cold fusion), hydrogen technologies (a.k.a. cold fusion), tabletop nuclear transformations (a.k.a. cold fusion),” Park wrote, noting that the conference was to be held under the “auspices of the U.S. State Department in the Dean Acheson Auditorium.” An embarrassed State Department booted the conference, but the meeting survived. Within a few weeks it was renamed the First International Conference on Future Energy, and it had apparently found another home. Valone billed the event as being held “In cooperation with the U.S. Department of Commerce”—the department that runs the U.S. Patent and Trademark Office. Commerce kicked the conference to the curb. Valone, too.

In May 1999, a week after Valone’s conference took place in a Bethesda hotel, his supervisors started a process to remove him from his job, alleging, among other things, that he had misrepresented the Commerce Department’s role in the conference. By the end of August, he was fired—but Valone filed a grievance. He felt he was being unfairly persecuted for his beliefs.

When the case was heard, the arbitrator had harsh words for the patent office and its reliance on hearsay, and failure to follow proper procedure. But the harshest criticism went to the physicists who had attacked Valone. It is easy to understand why Park and his American Physical Society colleagues went after cold fusion, he wrote:

The federal government’s budget pie for research and development in the areas of theoretical physics and chemistry is limited and, by and large, only traditional physicists represented by organizations like the APS, and its counterpart for conventional chemists, have been invited to sup on that pie. The last thing they want is any new guests invited to the table.

The arbitrator’s words echo those of the cold-fusion community. Small-minded physicists are trying to suppress research that would take money away from their own endeavors. Valone got his job back along with back pay.

The second Conference on Future Energy, with its lightning-bolt BioCharger, its talk about antigravity stealth bombers, and its whole-hearted embrace of cold fusion, was Valone’s victory celebration. It represented the defeat of the forces trying to suppress his views and the comeuppance for the physicists who had hounded Pons and Fleischmann abroad and driven cold fusion to the fringe. It was 2006, nearly two decades after the two chemists had been ridiculed by mainstream scientists, but the gathering proved cold fusion was still alive. The dream of unlimited fusion energy in a room-temperature test tube was too powerful for mere science to destroy.