WHAT’S UP WITH THE ARTS - THE GLORY OF BEING HUMAN - Human: The Science Behind What Makes Us Unique - Michael S. Gazzaniga

Human: The Science Behind What Makes Us Unique - Michael S. Gazzaniga (2008)

Part III. THE GLORY OF BEING HUMAN

Chapter 6. WHAT’S UP WITH THE ARTS?

A man who works with his hands is a laborer; a man who works with his hands and his brain is a craftsman; but a man who works with his hands and his brain and his heart is an artist.

Louis Nizer

HOW CAN YOU EXPLAIN THE ARTS? ARE HUMANS THE ONLY artists? Since we are products of natural selection, what possible evolutionary advantage did they bestow on us? Would a lion pause and think twice about eating your ancestor if he had done a quick little rendition of “Shuffle Off to Buffalo” in a pair of cobra skin shoes with coconut shell taps? Would a neighboring tribe’s army crawling through the brush exclaim to themselves upon seeing your camp, “Look at how aesthetically placed those logs are! And the fire pit is simply spectacular! What are we thinking? We could not possibly consider knocking out these creative people and taking their leg o’ impala roasting on the spit!”

Or maybe art is like the peacock’s tail. “Bruno makes the cutest carving instruments out of bones. All the other guys are just a bunch of Neanderthals, but Bruno, he is an artist. I think I’ll mate with him.”

Or is it all about status? “Bruno has the biggest knife collection of anyone. In fact he has a knife made by Gormox. I know, I know, Gormox’s knives don’t cut anything, and they are misshapen, but there are very few of them around!”

Or perhaps Bruno is curling up for his afternoon siesta when he catches a glimpse out of the corner of his eye of a snake peeking out at him. He remembers the bedtime story his father had told him about some guy who had seen a poisonous snake, and he had feigned sleep, and just as the snake was…he grabbed it and slammed it against the ground. As he skinned it with his cute knife and thought about some new taps, he considered, “Hmmmm. Maybe those stories weren’t just to put me to sleep after all.”

Or was he the first charming Frenchman? “Oh, my petite, slither with me through this cave just around the corner in Lascaux and let me show you my etchings.” Or was art a gift to the gods? “If I can get this dance down right, we will be sure to have plenty of good hunting and great weather. I better not screw up and hip when I should hop. That will wreck everything.”

And what about those intoxicating rhythms? Did the tribe that danced together bond better than the tribe who were out of sync? Were they better able to coordinate their hunting? Did the beat of drums work as an aphrodisiac? Was Pavarotti any different from a songbird attracting a mate? Is Mick Jagger another example of a peacock’s tail, or is there more to the story? Are the arts uniquely human?

Explaining the arts is a conundrum. A superficial consideration would place the arts in the position of frosting on the cake. After everything else is accounted for, then we can think about art. After we create the functional, is the aesthetic merely the extra? “I’ve built a chair and now I can sit down. Hmmm, it sure looks boring, maybe I should add a pillow for a splash of color.” After the rent, groceries, clothes, gas, car, insurance, utilities, retirement account, and taxes are taken care of, if there is any left over, then maybe you can consider a movie, a concert, painting, dance lessons, or a theatrical production. But is that really their place? Perhaps the arts are more important. Maybe they aren’t the frosting on the cake; maybe they are the baking soda, or the sugar. Maybe they are so much a part of us that once again we take them for granted. Perhaps the aesthetic quality of things is more basic to our sensibilities than we realize, and we ignore it at our peril. Does it belong to the great unconscious part of our brain we are learning more and more about to our amazement? When did art evolve? Is there any evidence of it in other animals or our ancestors? Was it necessary for big brains to develop first for art to appear, or did it contribute to their development?

Obviously many forms of art are unique to humans. Gorillas don’t play the sax, chimps don’t write plays. Can other animals appreciate art? Will a chimp gaze at the sunset or be enraptured by Rachmaninoff? Does your dog dig the Stones? Do we, as humans need art? Does it help develop our brains? Are piano lessons just as important as history class? Should we be spending more money on our children’s art education? Should we consider it not frosting, the last thing we spend money on, but a baseline budget item?

Many of these questions are just beginning to be addressed. We will start with a look at what art is. Then we’ll see what is known of the beginning of art and what it can tell us about the brains that created it. We’ll see what the evolutionary psychologists have to say, and then see what recent neuroimaging studies have revealed.

WHAT IS ART, ANYWAY?

Can we even define art? One of art’s mysteries is brought to our attention by the oft-said phrase “Beauty is in the eye of the beholder”—or the ear. We can both go to an art gallery, and one of us may have been enraptured while the other of us thinks we’ve seen a hack job. We may have heard the mumbled comment, “And she calls this art? I call it garbage.” We can go to a concert, and one of us will think the music sublime, and the other may be on edge and have to get up and leave. One of us may walk into a room and feel warm and relaxed and find it beautiful, while the other may find it tedious and boring, whispering, “His taste is all in his mouth!” We know instantly whether we like a painting or not. It “appeals” to us or it doesn’t.

Art is one of those human universals. All cultures have some form of it, whether it is painting, dance, story, song, or other forms. We can look at a painting or listen to a symphony or watch a dance recital and understand consciously how much time and effort went into the production, how much practice and education were (or perhaps were not) involved, and appreciate it, but that does not mean we like it. How can we define something about which we have no consensus? On the other hand, don’t we all gaze up at a starry desert sky and think it is beautiful? Don’t we all find a babbling brook lovely?

Ellen Dissanayake, an affiliate professor in the school of music at the University of Washington, points out, “The present-day Western concept of art is a mess.”1 She comments that our notion of art is peculiar to our place and time, and modern aesthetics comes from philosophers who had no knowledge of prehistoric art, or of the widespread presence of art around the world in its many forms, or that we had evolved biologically. Steven Pinker, who has penetrating ideas on just about everything, reminds us that the arts engage not only the psychology of aesthetics but also the psychology of status. In order to understand the arts the two need to be separated, and this is what hasn’t been done throughout many of the long windbag discussions about art in the past. The psychology of status plays a major role in what is considered Art. Just like an expensive house and a Lamborghini, an original Picasso on the wall has no utilitarian value but indicates that you have money to burn. Pinker says, “Thorstein Veblen’s and Quentin Bell’s analyses of taste and fashion, in which an elite’s conspicuous displays of consumption, leisure, and outrage are emulated by the rabble, sending the elite off in search of new inimitable displays, nicely explain the otherwise inexplicable oddities of the arts.”2

Once the fashion, architecture, music, etc., is accepted by the seething masses, it is no longer elite and may no longer be considered art with a capital A. Thus, it is impossible to define art if both aspects of its psychology are left entwined, because the accepted definition is constantly changing. However, if we can separate the two, then we can deal with the aesthetic aspect of art. Both Pinker and Dissanayake include in their category of art the common and not just the rarefied products. Your kitchen plates can be as aesthetically pleasing to you as a painting. Aesthetics has little to do with the monetary value of art. In the world of Art, however, it may be beautiful, but if it is a copy, it is worthless.

Pinker goes on to point out that the psychological response to the status aspect of Art is a forbidden topic among art academicians and intellectuals. To them, it is OK to be ignorant of the sciences and math, even though such knowledge would be beneficial to health choices. However, to prefer Wayne Newton to Mozart, or to be ignorant of some obscure reference, is as shocking as wearing your boxers (only) to a black-tie dinner. Your choice in art, your personal preference and knowledge about a leisure time activity, is used by another to make a value judgment about your character. The same does not usually happen in a discussion of hammers or chromosomes. How status became enmeshed in art is one question, and why we find something aesthetically pleasing is another.

BEAUTY AND ART

There are those who will argue that beauty has nothing to do with art. It must be because they have not separated the two different psychological responses. You don’t hear, “That is the ugliest painting I’ve ever seen. Let’s put it in the dining room.” But while looking at the same awful thing in the gallery, you may hear, “This is Blah Blah’s latest painting, and his last one was purchased by the Getty. I think I’ll get this for our New York apartment.” Camilo Cela-Conde, director of the Laboratory of Human Systematics and professor at the University of Islas Baleares, Spain, quotes the philosopher Oswald Hanfling as saying, “People who visit galleries, read poetry and so on, do it, after all, looking for beauty.”3 Symphony orchestras don’t survive by having this response: “It says here in the Sunday review that this symphony is the most dissonant and jarring piece of music that the critic has ever heard, and he likens it to fingernails scratching on a blackboard. Well that sounds great! Let’s go.” We are going to be interested in finding out if there is a universal sense of aesthetics or beauty. Pinker asks: “What is it about the mind that lets people take pleasure in shapes and colors and sounds and jokes and stories and myths?”2

One dictionary definition of art is: “Human effort to imitate, supplement, alter, or counteract the work of nature. The conscious production or arrangement of sounds, colors, forms, or other elements in a manner that affects the sense of beauty, specifically the production of the beautiful in a graphic or plastic medium.”4 Nancy Aiken of Ohio University breaks art down into four components:

1. the artist who makes the work

2. the work itself

3. the observer of the work, and

4. the value the observer places on the work.5

The American Heritage College Dictionary gives four definitions of aesthetics. We are going to consider them one by one. The first definition is: “The branch of philosophy that deals with the nature and expression of beauty, as in the fine arts. In Kantian philosophy, the branch of metaphysics concerned with the laws of perception.” We’ve got philosophers talking about what is beautiful, and they have been talking for centuries. The philosophical discussion starts with Plato’s theory that beauty is independent of the observer (although it needs an observer). If something is beautiful, it just is; no one’s opinions are necessary. A couple of millennia later, we have Kant, who was concerned with the aesthetic value to the perceiver: Beauty is in the eye of the beholder. Beauty is then a judgment.

Neuroscience can at least study Kant’s theories about perception and aesthetic judgments.6 So we have the stimulus (the object or artist or piece of music) and the sensual perception of the stimulus. Next comes our emotional response to the perception of the stimulus, which brings us to the second definition of aesthetics: “The study of the psychological responses to beauty and artistic experiences.”

The study of psychological responses to beauty has actually been rather sparse. Research in aesthetics has suffered the same fate as research into emotion. The behaviorists and the cognitivists have neglected it, and surprisingly, it has also been neglected by the more recent emotion theorists.7 It has been suggested that this neglect has been due to a failure to identify aesthetics as either cognition or an emotion, or even as both: It is an orphan child in the land of psychology. Aesthetics is a special class of experience, neither a type of response nor an emotion, but a modus operandi of “knowing about” the world. It is sensation with an attached positive or negative evaluation. Does this sound familiar? It is like the approach-don’t approach information given to the brain before it had language. In fact, I recently heard this statement: “I like that kitchen, but I can’t tell you why. I guess you have to break it down and examine its components to figure it out.”* After the emotional reaction, we get a judgment tempered by either an unconscious (hardwired) or conscious (conditioned by culture, upbringing, education, and inclination) idea of whether we think the input is beautiful.

And that takes us to the third definition of aesthetics: “A conception of what is artistically valid or beautiful.” Donald Norman of Northwestern University suggests that there are three separate levels of beauty. The surface beauty, which is the immediate visceral reaction, is biologically determined and is consistent in people throughout the world. Then there is beauty in operation or behavior (how that beamer handles on the autobahn). Last is the beauty in depth, in meaning, and implication, which Norman calls reflective. Reflective beauty is conscious and is influenced by the individual’s culture, education, memory, and experience—everything that goes into you as a person.8 Thus there are two different types of aesthetic judgment, one visceral and automatic, the other conscious and contemplative.

And finally we arrive at the fourth definition of aesthetics: “An artistically beautiful or pleasing appearance.” Nicholas Humphrey tackles the question of beauty from the perceptual end by attempting to define the particular perceptual quality that things of beauty have in common. He proceeds by searching for the essence of beauty in the relations formed between the perceived elements. We can listen to a melody and think it is beautiful, but we don’t think a B-flat is beautiful by itself, and an A is beautiful, and so on. It is the combination, the relations among the different notes, that are beautiful. But this doesn’t really help us out all that much. Sure, we can say the relation is beautiful, but what relations are important? Why are they important? Why isn’t an endless trill of B-flat and A beautiful, whereas a quick little flourish of it in the right spot is?

Humphrey calls on the poet Gerard Manley Hopkins. Hopkins defined beauty as likeness tempered with difference. Humphrey goes on to build a hypothesis that “aesthetic preferences stem from a predisposition among animals and men to seek out experiences through which they may learn to classify the objects in the world about them. Beautiful ‘structures’ in nature or in art are those which facilitate the task of classification by presenting evidence of the ‘taxonomic’ relations between things in a way which is informative and easy to grasp.”9 Humphrey is hinting that our ability to make aesthetic judgments is fundamental to learning.

In the nineteenth century, Gerard Manley Hopkins didn’t have neuroscience to help him out, nor did Plato in his day. But things have changed and gotten more interesting. Psychologists Rolf Reber, Norbert Schwarz, and Piotr Winkielman, from the University of Bergen, Norway, the University of Michigan, and the University of California, San Diego, respectively, tackle the question of beauty through neural processing. They propose that beauty, as defined by aesthetic pleasure, is a function of the perceiver’s processing dynamics. The more fluently perceivers can mentally process an object, the more positive their aesthetic response. This theory has four assumptions:

1. Some objects are processed more easily than others because they contain certain features the brain is hardwired to process, which it does quickly, such as symmetry. (These are features we will run into later.) But the ease of processing can also be influenced by perceptual or conceptual priming.

2. When we perceive something we process easily, we get a positive feeling.

3. This positive feeling contributes to our value judgment as to whether something is pleasing or not, unless we question the informational value of this input.

4. The impact of the fluency is moderated by your expectations or what you attribute it to. If you go shopping at Nordstrom and enjoy the piano playing while you are shopping, you are in a positive mood. Then, when you see a red purse you like, you are more likely to buy it because of this positive mood. However, before we enter the store, I might tell you, “Don’t let the piano playing go to your head. They just do that to put you in a good mood so you’ll buy more.” Then when you see that purse, you will be more conscious about deciding whether you like it or not.

However, even though there are hardwired preferences due to ease of processing, different experiences can increase processing fluency in novel areas, and new neural connections can be made, all of which will affect aesthetic judgment.10 Your processing fluency can be enhanced by experience. The first time you see a new architectural style, you may not like it, but after you have seen it several times, it begins to “grow on you.” The beauty of this theory is that it can account for many different findings that have been puzzling. I will return to it a bit later.

Hopkins broke down the aesthetic judgment of a “beautiful” object into its perceptual and its visual or auditory components, then analyzed what he thought were factors contributing toward making his judgment, implying that these would be universal rules. Reber, Schwarz, and Winkielman assume there are some things that are innately easy to process. Norman thinks that the immediate reaction we get to surface beauty is biologically determined. Can science tell us whether there are in fact universal guidelines for aesthetic preferences that are hardwired in our brains?

Are There Universal Components to Aesthetic Judgments?

Do we share some universal preferences for certain components of aesthetic preference with other animals? If so, when did these preferences get channeled into the actual production of art? Can the past help us? Can we pinpoint when art first appeared? I won’t keep you in suspense. That answer is no. The point at which our ancestors first perceived a stimulus and made a value judgment that it was beautiful is probably always going to be unknown to us. When did the first primate look up at the sunset and find it magnificent? Did this happen before we diverged from our common ancestor or afterward? Is there any evidence chimpanzees have aesthetic sensibilities? Chimpanzees will have an emotional reaction to some natural phenomena. Jane Goodall describes a waterfall in Gombe National Park where she has observed chimps on several different occasions. After they arrive there, they do a wild dance, which involves rhythmically swaying from foot to foot, and then they sit and watch the water as it falls.11 What is going on in the chimpanzees’ brains is unknown. Are they excited, just as a child is excited to go to the beach? Do they feel the emotion of awe? Are they making an aesthetic judgment? (“I like this” does not necessarily translate to “I think this is beautiful.”) Can they even make aesthetic judgments?

Artistic Chimps?

Some chimpanzees, especially when young, when given pencils or paints have become engrossed in using them, to the point of ignoring favorite foods and turning their backs on other chimps while working on a design. Chimps familiar with drawing have begged for supplies when they see their caretaker in possession of them and have thrown tantrums when stopped while painting. One untamed chimp named Alpha refused to draw with a pointed stick and would reject pencils with dull points. Obviously, some chimps like to draw and are a bit fussy about the results. Chimps also stayed within the boundaries of their paper, and one chimp would mark the corners before starting.12 A series of three paintings by a male chimp named Congo recently sold at auction for twelve thousand pounds.13

Desmond Morris, who studied Congo primarily, as well as the works of other primate drawers and painters, could identify six common principles in both chimpanzee and human art. It was a self-rewarding activity, there was compositional control, there were variations in line and in theme, there was optimum heterogeneity and universal imagery.12 Just as the art of children and untrained human adults across cultures is very similar in its imagery and appearance, the chimpanzee drawings and paintings also were similar to each other. Morris attributes universal imagery in human art partly to similarities in muscular movements of the body and to the constraints of the visual system. As an artist is trained, he gains more control over his musculature, and with practice, Morris suggests, a third influence becomes more pronounced—the psychological factor.

However, Congo was not a supreme colorist, as his paintings may suggest. If left alone with the paints, he would mix them all together until he had made brown and then would use that. He was handed brushes that had been preloaded with paint, and when that color was used up, he was handed another color. In order that the researchers might study the calligraphy of the strokes, one color was allowed to dry before another color was given to him, so that the colors and strokes would not blend. If left to his own devices, he would not allow one color to dry but would slap on the next, and the colors and strokes would become muddy. Although he would signal when he was done with a drawing, he would frequently draw on top of it if it was given to him at another time. After completing a drawing or painting, he was no longer interested in it. He wouldn’t just look at it for pleasure. The drawing and painting sessions were very short, never lasting more than a few minutes per picture, presenting the question of whether the end of the picture was an aesthetic judgment or simply the end of his attention span, especially since he would draw on top of it at a different session. Interestingly, he would try various techniques, such as urinating on a painting and swishing the urine around and later using dripped water on a painting for the same effect. He tried using his grooming brush and fingernails on the paints also. Novelty was important. None of the chimpanzees that Morris studied created a recognizable pictorial image.

In discussing compositional control, Morris cites a study done by Professor Bernhard Rensch in Germany, who wondered if animals had pattern preferences. He tested four inquisitive species: two monkey species, capuchin monkeys (Cebus) and guenon monkeys (Ceropithecus), and two bird species, jackdaws and crows. He presented a series of cards with either regular rhythmic patterns or irregular markings.

After several hundred tests, Rensch found that all four species would pick up the regular patterns more frequently. He concluded: “When choosing between different black patterns on white cardboards the monkey preferred geometrical, i.e. more regular patterns, to irregular ones. It is very probable that the steadiness of the course of a line, the radial or bilateral symmetry and repetition of equal components in a pattern (rhythm) were decisive for the preference…. Both species of birds preferred the more regular, more symmetrical or rhythmical patterns. In most cases the percentage of preference was statistically significant. Probably this preference is caused by the better ‘complexibility,’ i.e. the easier comprehensibility of symmetrical and rhythmical repetitions of the same components (Rekurrenzlust).”* Morris points out that the vital elements—symmetry, repetition, steadiness, rhythm—are the basic factors that appeal to the eye in selecting a pattern, but they also appear in the production of patterns. There is a “positive reaction to order rather than chaos, organization rather than confusion.” We can see from these studies that there is a preference in numerous species for specific types of visual patterns, the same preferences that humans show. It seems that there is a biological basis to the preference for some of the components of pictorial images.

EARLIEST HUMAN ART

In order to look for the origins of artistic endeavors in our direct ancestors, we need to look at what archaeological artifacts can tell us. Obviously we will never know when the first melody was strung together and hummed merely for enjoyment. Much of decorative art is likewise ephemeral, being in the form of feathers, wood, paint, and clay. We can explore this question only by looking at artifacts that have survived: stashes of dyes, tools, shell and bone beads, and rock art, such as can be seen in the caves of southern France and the wilds of Australia. We will discuss music a bit later on.

The question of whether stone tools were a creative endeavor has spurred some controversy. Stone hand axes have been found with remains of Homo erectus dated from 1.4 million years ago,14 and examples have been found dating until about 128,000 years ago. Although chimpanzees sometimes will use a stone as a tool to crack open nuts, and even may carry a particular stone from one tree to another, they have never yet been observed in the wild intentionally flaking a stone to make a tool.15 The basic design of the early hand ax and its production technique remained stable over many thousands of years and across a wide geography. The axes appear to have been flaked along the path of least resistance. They show a limited degree of imposed form, rather than an imagined plan in mind. Later examples began being modified with more pleasing symmetries, distinctive twisting patterns, and different length-to-width ratios. It continues to be debated whether stone hand axes represent only a mimetic ability16 or are the early products of a developing creative imagination.

British archaeologist Steven Mithen suggests that to fashion an ax out of a random shape of stone may indicate the presence of creativity.15 But we aren’t exactly concerned with creativity, which can produce articles of only functional quality, but with art, aesthetic appeal. Ellen Dissanayake points out that some of the hand axes made by Homo erectus were made of pudding stone (conglomerate), which most people would call beautiful, rather than flint, which was more abundant and easier to use. This suggests they may have had an interest in its appearance. Later axes made by early Homo sapiens, dated at 250,000 years ago, incorporated fossils centrally (symmetrically!) displayed in their carving. Some have been examined under an electron microscope and have been shown never to have been used.1 Perhaps they were retained just for their aesthetic appeal. Although there is this evidence of some artistic sensibility, it appears to have been limited.

Researchers interested in the origins of human art are of two camps. Some believe there was an explosive event, some sudden and major change in human abilities and creativity that occurred about 30,000 to 40,000 years ago; others believe it was a more gradual process with roots extending back millions of years. We will leave this argument to those so inclined and will take from it the one thing that is agreed upon. There is evidence of decorative hand axes, beads, and ocher powders dating thousands of years before this period, but the overwhelming number of artifacts that have been found have their origins in the last 40,000 years. There was an explosion of artistic and creative activity that included cave paintings and engravings found from Australia to Europe, as many as ten thousand sculpted and engraved objects made from ivory, bone, antler, stone, wood, and clay found across Europe to Siberia, and sophisticated tools, such as sewing needles, oil lamps, harpoons, spear throwers, drills, and rope.

Many archaeologists conclude that this explosion of creativity represents a fundamental evolutionary event in the Homo sapiens lineage.17 Something changed in our brain that expanded its earlier creative abilities, something unique to Homo sapiens. Remember from chapter 1 the genetic variant of microcephalin that arose approximately 37,000 years ago? Suddenly, about 40,000 years ago, when life could not have been easy street—with infectious diseases, hunting mishaps, shorter life spans, and no convenience stores, Prada, or Armani—anatomically modern Homo sapiens, in an unprecedented burst of creative and aesthetic activity, began painting pictures, wearing jewelry, and coming up with a host of new useful items. Why were they doing this, and what can this tell us about our brains?

Evolutionary Theories About the Origins of Art

Charles Darwin considered the aesthetic sense an intellectual faculty that was the result of natural selection. Nobody else thought much about this until Ellen Dissanayake came along. She proposed that art is a biological behavior! She based this on several observations. To begin with, song, dance, storytelling, and painting are universal in all cultures. In most societies, art is an integral part of most human activities and consumes a large portion of available resources. For example, the men of the Owerri tribe in Nigeria who build and paint ceremonial houses don’t have to participate in their day jobs for up to two years. Arts give pleasure: Our motivation system seeks them out because they reward us by making us feel good. Young children spontaneously engage in dancing, drawing, and singing. Like Darwin, Dissanayake proposes that the behavior of creating art has evolved through natural selection and that the fundamental behavioral tendency that lies behind the arts is what she calls “making special.”

Making something special implies intent, and the intent is to distinguish an object or action from the ordinary by appealing to the emotions through the rhythms and textures and colors that it employs. Dissanayake thinks that “making special” is a behavior that increases group cohesiveness and thus would provide a survival advantage. A cohesive group in turn could increase individual survival. She suggests that in the past, the realm where one would want to make something out of the ordinary had to do with magic or the supernatural world, in the form of rituals, not as it is done today for a purely aesthetic motive.

Whatever one calls art, one is acknowledging that it is special in some way. Using “making special” as the major motivation of art as a behavior, one can include many behaviors and leave out the value judgments of whether it is “good art.” We no longer need to think of art as being done for its own sake, which makes it easier to explain in an evolutionary context. Although many people have suggested that art’s origins arose from a single motivation, such as body ornamentation, a creative impulse, relief of boredom, or communication, Dissanayake proposes that it is composed of many parts—manipulation, perception, emotion, symbolism, and cognition—and arose alongside other human characteristics, such as tool making, the need for order, language, category formation, symbol formation, self-consciousness, creating culture, sociality, and adaptability. She proposes that the creation of art in terms of human evolution was “to facilitate or sugarcoat socially important behavior, especially ceremonies, in which group values often of a sacred or spiritual nature were expressed and transmitted.”*

Geoffrey Miller, who, as you may remember, studies sexual selection, thinks that the arts are the result of sexual selection. He suggests that creative individuals had higher reproductive success. He proposes that the arts are like the peacock’s tail—a fitness indicator. The more intricate, complex, and extravagant an artwork was, the greater the skill that was required to produce it, and the less functional it was for survival, the better it would be as a fitness indicator. Such a work says, “I am so good at finding food and shelter that I can spend half my time doing something that has no visible survival value! Pick me to mate with and you will have some dynamite offspring who are as capable as I.” Miller states, “the peacock’s tail, the nightingale’s song, the bowerbird’s nest, the butterfly’s wing, the Irish elk’s antlers, the baboon’s rump, and the first three Led Zeppelin albums”18 were all examples of sexually selected fitness indicators. I guess he wasn’t as impressed with “Stairway to Heaven,” on Led Zeppelin IV, as others were.

Steven Pinker is not so sure that the arts have an adaptive function at all but thinks rather they are a by-product of the brain’s other functions. He points out that the reasons on which Dissanayake bases her premise that the arts serve an adaptive function—they are present in most cultures, use a lot of resources, and are pleasurable—can also be said of recreational drug use, which is hardly what one would call adaptive.

From the evolutionary psychologist’s point of view, the brain is motivated by needs that served biological fitness in our ancestral environment, such as food, sex and successful reproduction, safety and predator awareness, friendship, and status. When goals are attained, the body rewards us with a pleasure sensation. We hunted and caught the gazelle, we are now munching away at it, and we get a pleasurable sensation. The human brain also has the ability to understand cause and effect and uses that to attain some goals. “If I hunt the gazelle and kill it, I will have something to eat” (and unconsciously will be rewarded with a pleasure sensation). Pinker thinks that the brain has put that together and figured out that it can get the pleasure sensation without all the hard work of actually attaining a goal. One way of doing this is taking recreational drugs; another way is through the senses that were designed to give off pleasure signals when they came across a fitness-enhancing sensation. Thus we get a pleasure signal when we eat something sweet and full of fat, a jelly doughnut for instance.

In our ancestral environment, it would have been fitness-enhancing to have a motivation to find and eat sweet food (ripe fruit) and fats, because they were hard to find and were good for survival. However, we know where that road leads today, when food is abundant. We are still motivated by the pleasure that we feel when we eat sweets and fats, although it is no longer adaptive to have such a strong motivation that is difficult to deny. Recreational drugs can also elicit a pleasurable feeling without having to do the work of attaining a goal. Listening to music gives us pleasure but doesn’t appear to enhance fitness…or does it? Pinker, however, does not have a closed mind. He is listening to John Tooby and Leda Cosmides, directors of the Center for Evolutionary Psychology at the University of California, Santa Barabara. They have another idea, and he is looking interested.

Something Odd Is Going On

Tooby and Cosmides originally were also of the opinion that the arts were a by-product, but now they don’t think that theory answers all the questions. They state, “Almost all the phenomena that are central to the humanities are puzzling anomalies from an evolutionary perspective.”19 Especially odd is what they call the attraction to the fictional experience, whether it is in a story, a drama, a painting, or other products of the imagination. If these phenomena didn’t exist cross-culturally (involvement with fictional, imaginary worlds is another one of those human universals), no evolutionary psychologist would have predicted them.

Another item in the list of odd phenomena is that the involvement with imaginative arts is self-rewarding without an obvious functional payoff. Why do people sit around and watch sitcoms or read novels or listen to stories? Is it just a waste of time? Are they just a bunch of lazy couch potatoes? Why does the brain contain reward systems that make fictional experiences enjoyable? Why would we rather read a mystery story on a rainy afternoon than the repair manual for our car, which could prove more useful? And why, when we read a story or watch a movie, do some of our psychological responses kick in but not others? Why will we react emotionally but not physically? The movie may scare us, but we don’t run out of the theater. If we are scared, why don’t we run? Why hasn’t that unconscious reaction kicked in, as it would if we saw a snake? However, we may remember the movie and act on the memory: We may not close the shower door after seeing Psycho. It seems that humans have a specialized system that allows us to enter imaginary worlds.

The neural machinery that permits this play in imaginary worlds can be selectively impaired. Children with autism have severely limited imagination, which suggests that it is a specialized subsystem, not a product of general intelligence, which usually is normal in autism. In children, pretend play begins to appear at about eighteen months, the same time that they begin to understand the existence of other minds. How is an infant able to understand that a banana is something he can eat, but can also be a faux telephone? No one takes him aside one day and says, “Son, a banana is a piece of food, but because it is shaped like a telephone receiver, we can pretend…wait a minute, pretend is what I am trying to explain, ah, we can substitute a banana for a telephone receiver, it won’t really work, but if we want to play, I mean….” How does the child understand faux anything? How does he know what is real and what isn’t?

Separating Pretense from Reality

Alan Leslie of Rutgers University proposed a special cognitive system that separates pretense from reality: a decoupling mechanism. He wrote: “The perceiving, thinking organism ought, as far as possible, to get things right. Yet pretense flies in the face of this fundamental principle. In pretense we deliberately distort reality. How odd then that this ability is not the sober culmination of intellectual development but instead makes its appearance playfully and precociously at the very beginning of childhood.”20 Tooby and Cosmides conclude that the fact we have adaptations that prevent the mistaking of fact and fiction, and that there seems to be a reward system that allows us to enjoy fiction, implies that there is a benefit to the fictional experience. Good news for the authors of fiction! What could it be?

In order to navigate the world successfully, one needs accurate information. Survival depends on it. People in general should prefer to read nonfiction rather than fiction, but instead, they would rather watch a fictional movie than a documentary; they prefer to read a historical novel rather than a history book. However, when we really do want accurate information, we go to the encyclopedia rather than to Danielle Steele.

Enhancing Fitness

Why do we have this appetite for the imaginary? To answer this question and the question of why we evolved aesthetic reactions, Tooby and Cosmides remind us that fitness-enhancing adaptive changes can be made in three ways. They can be made to the external world, with actions or appearances that increase sexual encounters (à la Miller’s sexual selection theory). These changes include cooperation (Dissanayake’s theory) and other mutual behaviors, like aggressive defense, habitat selection, and feeding your infant. Adaptive changes can also be made so as to increase the fitness of the body, such as the pleasure reward for eating sugar and fat, vomiting to get rid of toxic food, and sleeping. Last, changes can be made to the brain. Fitness-enhancing changes to the brain include capacities for play and learning. And here is where Tooby and Cosmides think our search should concentrate.

We think that the task of organizing the brain both physically and informationally, over the course of the lifespan, is the most demanding adaptive problem posed by human development. Building the brain, and readying each of its adaptations to perform its function as well as possible is, we believe, a vastly underrated adaptive problem. We think that there is an entire suite of developmental adaptations that have evolved to solve these adaptive problems, and that the possible existence of many of these adaptations has gone largely unexamined. Thus, in addition to world-targeted and body-targeted aesthetics, there is a complex realm of brain-targeted aesthetics as well.19

Do aesthetic experiences make our brains work better? Did Humphrey hit it on the head? Was he right when he hinted that aesthetics was fundamental to learning?

We are born with brains that have a lot of hardwired systems, but unlike computers, the more software you load into them and the more internal connections that are forged, the faster and better they work. For instance, we have language systems ready to learn a language, but the specific language is not encoded. The hardware is there, but the software isn’t. Some of the information necessary for the development of the adaptation of language is economically stored in the external world; you have to input it. The genome does not have to be so complex if reliable information can be stored in the outside world. This is true not only for language but also for parts of the visual system and other systems. Tooby and Cosmides believe that we may have aesthetic motivations that have evolved to serve as a guidance system to prod us to seek, detect, and experience different aspects of the world, which will help our adaptations reach their full capacities. We get rewarded with a pleasurable feeling when we do this.

With this in mind, the two researchers suggest that a neurocognitive adaptation may have two modes. One is a functional mode. Once it is up and running, it does what it has been designed to do. The functional mode of the language system is speaking. The other mode is an organizational mode, which is what builds the adaptation and assembles what is necessary for the functional mode to start working, as when a baby babbles to develop its language system. The organizational mode is necessary to produce the functional mode. The famous example of not stimulating the organizational mode is Victor of Aveyron (François Truffaut’s L’Enfant Sauvage), the young boy who was found living alone in the wilds of France in 1797. Three years later, at the estimated age of twelve, he allowed himself to be cared for by other humans. However, he was never able to learn language beyond a couple of words. It is now understood that in order to learn to speak, one must be exposed to language at an early age. There appears to be a critical period in which one must be exposed to a particular stimulus. Critical periods of learning are also documented in birds. A young chaffinch must hear an adult singing before it sexually matures, or it will never properly learn the highly intricate song.21

Critical periods have been identified to construct other adaptations, such as binocular vision. The critical period for the development of a human child’s binocular vision is thought to be between one and three years of age.22 The organizational mode of each different adaptation is expected to have a different aesthetic component. In this way, Tooby and Cosmides explain that aesthetically driven behavior only seems to be nonutilitarian because we are analyzing it from the aspect of changes adaptive to the external world, not to the internal world of the brain. We see some nonutilitarian behavior, such as dancing, but we don’t see how that affects the development of the brain. “Natural selection, a relentless but devious task-master, seduces you into devoting your free time to these improving activities by making them gratifying.” It is fun—that is, it feels good—to dance, so we do it. This happens when the external price is not too great and we are not concerned with competing for food, sex, and shelter. These circumstances are most often present when we are children.

Tooby and Cosmides’ conclusion is a most important aspect of this discussion: “The payoff on such investments is greater earlier in the lifecycle, when competing opportunities are lower, the adaptations less well developed, and the individual can expect to benefit over a longer subsequent lifespan from her investment in increased neuro-cognitive organization. For this reason we expect that children should live according to behaviorally imperative aesthetic sensibilities in an aesthetics-drenched world, although their standards of the fun and the beautiful will be somewhat different from our own.” It is interesting to note that the male chimpanzees, as they matured and started to vie for mates and social position, were less inclined to paint.12 The external costs were becoming too great.

Tooby and Cosmides’ answer to the nature-versus-nurture argument, which really should be put to bed, is that we have genes that code for certain adaptations (nature), but in order to realize their full potential, certain exterior conditions need to be met (nurture). “Innate ideas (and motivations) are incomplete ideas…. Our evolved inheritance is very rich compared to a blank slate, but very impoverished compared to a fully realized person.” They think the arts are not frosting but baking soda.

The two go on to propose an evolutionary theory of beauty, which they concede is not very informative. “A human should find something beautiful because it exhibits cues which, in the environment in which humans evolved, signaled that it would have been advantageous to pay sustained sensory attention to it, in the absence of instrumental reasons for doing so. This includes everything from members of the opposite sex to game animals to the exhibition by others of intricate skills…. However, the class of beautiful entities is immense and heterogeneous, with no other unifying principle except that our evolved psychological architecture is designed to motivate sustained attention to them through making the experience intrinsically rewarding.” They don’t believe there is a general prescription for beauty, but there are several subsets that have strict principles that differ for different applications, such as sexual attractiveness, and landscape.

An example they use is that many natural phenomena are considered beautiful, such as a starry night, natural landscapes, the pattering of rain, and running water. As we sit in the chaise longue on a warm evening, or lean back from the campfire and gaze up at the desert sky (where we can actually see the stars), or lean back in our chair while gazing up at a leafy plane tree and listening to a fountain’s burble in a square in Aix-en-Provence, what we experience is the pleasure (emotionally positive response) of relaxed attention. But why is it relaxed? They think this is caused by an organizational mode adaptation that provides us with an innate program for these invariable phenomena. We unconsciously know what they should sound or look like. They are the default mode, and they are aesthetically pleasing. They are used as test patterns against which actual perceptions are compared. The scene agrees with the innate principle of babbling brook and leafy green tree. It is when a stimulus varies from the programmed default that increased attention is aroused. When the birds and frogs stop chirping, when the stars disappear, and when the babble becomes a roar, our attention becomes focused.

So what does this all have to do with our attraction to fictional experience? Tooby and Cosmides suggest that it increases the opportunities in which adaptation-organizing experiences can occur: nurture building on nature. Pretend play, such as hide-and-seek, can develop skills that are better learned in a play situation than when they may need to be actually used. It would be fitness enhancing to learn to hide or run from a predator, or stalk and search for food, before one actually needs to do it for survival. If you recall, one thing that is correlated with brain size is amount of play. We discussed play in terms of practice for real life, stress reduction, and sexual selection, but not in terms of imagination. From having read the fictional story about the boy who cried wolf when we were children, we can remember what happened to him in the story and not have to learn that lesson the hard way in real life. The more fictional stories we hear, the more circumstances we become familiar with, without having to actually experience them. If we do run across the same circumstances in life, then we will have a wealth of background info to draw from. “This same thing happened to Sally in that movie. What did she do? Oh yeah…that worked out pretty well, I think I’ll try that.” It is interesting to note that throughout world literature, there appears to be a limited number of scenarios, and they are all related to evolutionary concerns, such as protection from predators, parental investment, proper relationships with kin and non-kin, and mate selection, to name a few, and all fiction draws on these.23

Becoming Mentally Flexible

The core ability that enables us to use all this fictional information is the decoupling device separating pretense from reality in our brains, which Leslie proposed. This device appears to be uniquely human. Tooby and Cosmides comment that humans are radically different from other species in the amount of contingently true information we use. We can categorize information as always true, true only on Thursdays, true only when told by a related person, true if done before winter, true if you are talking about orange trees but not plum trees, used to be true but isn’t now, true in the mountains but not in the desert, true about lions but not about gazelles, true when Josh is talking about Sarah but not about Gabby, etc. Our ability to use contingently true information is unique. Our brains store not just absolute facts but information that may be true only temporarily or locally or to a specific individual. And we can break information down into component parts and keep this info stored and separated from other info. We can mix and match info from different times, places, and input types, and we can make inferences based on the source. This allows us to separate fact from fiction, and also to know that the store is open every day in the summer but not in the winter. This has allowed us to be very flexible and adapt to different environments.

Joseph Carroll, an English professor at the University of Missouri interested in Darwinian theory, points out:

To the modern human mind, alone among all minds in the animal kingdom, the world does not present itself as a series of rigidly defined stimuli releasing a narrow repertory of stereotyped behaviors. It presents itself as a vast and perplexing array of percepts and contingent possibilities. The human mind is free to organize the elements of its perception in an infinitely diverse array of combinatorial possibilities. And most of those potential forms of organization, like most major mutations, would be fatal. Freedom is the key to human success, and it is also an invitation to disaster. This is the insight that governs E. O. Wilson’s penetrating explanation for the adaptive function of the arts. “There was not enough time for human heredity to cope with the vastness of new contingent possibilities revealed by high intelligence…. The arts filled the gap.”24

So the arts may be useful as a form of learning. As Humphrey suggested, they help us categorize, they increase our predictive power, and they help us react well in different situations—and thus as Tooby and Cosmides suggest, they do contribute to survival.

AND WHAT ABOUT BEAUTY? IT’S BIOLOGIC, BABY!

It boils down to this: What people find beautiful is not arbitrary or random but has evolved over millions of years of hominid sensory, perceptual, and cognitive development. Sensations and perceptions that have adaptive value (i.e., that enhance safety, survival, and reproduction) often become aesthetically preferred. What evidence do we have for this? To begin with, remember that every decision is funneled through the approach-or-withdraw module in the brain: Is it safe or not? And these decisions happen fast.

You’ll recall that people have an instantaneous reaction, using what Jonathan Haidt calls the like-o-meter.25 For instance, people will judge whether they like or dislike a Web page in 0.5 seconds, and the stronger their evaluation the faster it happens.26 What is it that influences how our like-o-meter reacts? What are the physical elements in a visual or auditory stimulus that make one like it, dislike it, or respond fearfully to it?

More is known about the visual system than about other systems. There seem to be certain elements that can be extracted from an image extremely quickly. A preference for symmetry has been shown to exist cross-culturally,27, 28 and has also been found in other animals, as I have mentioned earlier. It also plays a role in mate selection. Symmetry is associated with mating success or sexual attractiveness in many species, including humans.29For example, symmetry in both sexes is associated with increased genetic, physical, and mental health.30 Men with symmetrical features have greater facial attractiveness31 and lower metabolic rates,32 attract a greater number of sexual partners, have sex at an earlier age,33 and have more extra-pair copulations.34 In women, asymmetry is correlated with increased health risks,35 while symmetry is associated with higher fertility 32, 36, 37 and facial attractiveness.38 Ovulating women are more attracted to the body scent of symmetrical men, and symmetrical men are more muscular and active.39 The voices of both men and women with greater bilateral symmetry were rated as more attractive by members of both sexes than those with asymmetrical traits.40 Symmetry seems to be an important indicator of genetic quality and attractiveness for potential mates of both sexes. It seems the preference for symmetry has its roots in biology and sexual selection. Reber, Schwarz, and Winkielman suggest that it is not symmetry per se that is preferred, but the fact that it has less information and is easier to process.10

It also appears that when one is judging the attractiveness of human faces, beauty is not all in the eye of the beholder. Faces judged attractive in one culture are also judged attractive by other cultures.41, 42 This makes sense if biologically relevant characteristics are revealed by attractiveness.

Babies as young as six months old prefer to look at attractive (as judged by adults’ preferences) faces. This effect is independent of race, gender, and age; it indicates an innate sense of what a human judges to be attractive.43 Women with more attractive, healthy, feminine faces have higher estrogen levels and thus reproduce better.44 Sexual selection has provided an aesthetic concept for facial attractiveness.

People also like curved objects better than angular ones. Researchers correctly predicted that emotionally neutral objects with primarily pointed features and sharp angles would be less well liked than corresponding objects with curved features (e.g., a guitar with a sharp-angled contour compared to a guitar with a curved contour). The rationale for this prediction was that sharp transitions in a contour might convey a sense of threat, on either a conscious or a nonconscious level, and would trigger a negative bias.45 Or is it because curves are processed more easily?

Humans easily make aesthetic judgments about shapes. Richard Latto coined the term aesthetic primitive to suggest that a shape or form is aesthetically pleasing because it is more effectively and more easily processed, due to the processing properties of the human visual system.46 To find evidence for this, he investigated a phenomenon known as the oblique effect, which he attributes to Joseph Jastrow, who first described it in 1892.47 Observers with normal vision are better at perceiving, discriminating, and manipulating horizontal and vertical lines than oblique ones. He wondered, if people are better at perceiving them, do they like them better? Apparently so: Latto found that humans prefer pictures whose component lines are verticals and horizontals rather than oblique angles.48

People recognize objects faster when there is high contrast between an object and its background. Contrast makes identification easier. Objects are more easily processed with higher contrast. People also like higher-contrast pictures. Is this because they process them more easily or because of the contrast per se? If stimuli are presented quickly, people prefer the high contrast, but if they are given more time to decide, the preference weakens. Reber, Schwarz, and Winkielman have found that contrast influenced aesthetic judgments only at short exposure times. If someone is given more time to process a picture, then the ease of processing is no longer a factor in the decision,10 so it is not the objective factor of contrast that caused the earlier decision, but the fluency of the processing.

We also appear to have an innate preference for natural landscapes. When comparing urban landscapes, people prefer those that contain some vegetation.49, 50 Hospital patients with views of outside trees feel better, recover faster, and require less pain medication than those looking out on a brick wall.51 What is really interesting is that we have a preference for particular types of landscapes. People always prefer to have water in their landscapes, but when this variable is excluded, there is yet another preference. When shown a series of photographs of five natural landscapes—tropical rain forest, temperate deciduous forest, coniferous forest, savanna, and desert—the youngest subjects (those in the third and fifth grades) picked the savanna as a preferred landscape. Older subjects equally preferred those landscapes with which they were familiar, as well as the savanna.52 People were happier viewing scenes with trees rather than inanimate objects, and also preferred the shapes of trees with spreading canopies, similar to those found on the African savanna, rather than rounded or columnar ones. This was true even of people who were raised in areas where round or columnar trees were dominant.53

Gordon Orians, an emeritus professor of ecology at the University of Washington, formulated the savanna hypothesis. He proposed that human aesthetic responses to trees with spreading forms would be based on innate knowledge (of our ancestral habitat) of the shapes of trees that would be associated with productive human habitats in our ancestral landscapes.54

What is it about natural landscapes that attract the brain? Can you say fractals? Nature’s patterns are not the simple shapes we learned in geometry class. Trees are not triangles, and clouds are not rectangles. We learned to find the areas of squares and circles and triangles, and the volumes of cubes and cones and spheres. That was Euclidian geometry, and this is a whole other ball of wax. We did not learn to find the area of a tree’s branches or the volume of a cloud (luckily). Nature’s forms are more complex.

Many natural objects have what is known as fractal* geometry, consisting of patterns that recur at increasing magnification. Mountains, clouds, coastlines, rivers with all their tributaries, and branching trees all have fractal geometry, as do our circulatory system and our lungs. For instance, we can see the veins on a leaflet, then the leaflets that make up a leaf and the leaves on a branch and the branches that make up a tree. If I gave you an empty piece of paper and asked you to draw a branching tree on it, how could you describe to me how dense the branching is that you drew? Well, there is a measurement called D. The empty paper would have a D of 1. A completely blackened paper would have a D of 2. Somewhere in between is the amount of branching you drew. When you show people fractal versus nonfractal patterns, 95 percent of people prefer fractal patterns.55 Humans generally prefer scenes with a D (fractal density) of 1.3 and low complexity,56, 57 and they have a lower stress response when observing them.58, 59 This may explain why hospital patients improve faster in a “room with a view.” They look out and see a natural fractal pattern of 1.3 D. This preference for fractal patterns with a D of 1.3 extends from natural scenes to art and photography,60 independent of gender and cultural background.61

Richard Taylor, a physicist at the University of Oregon, wondered if the eye is aesthetically “tuned” to the fractals surrounding us in nature.62 Is it some property of the visual system that makes us prefer fractals of specific dimensions? How does it discern them in complex scenes? Taylor knew two things about eyes. One was that the eye fixates predominately on the borders of objects while examining a scene, and the other was that the edge contours play a dominant role in the perception of fractals. Putting those two facts together, he figured the tuning might be through silhouettes. His group has found that people like skyline scenes with fractal values of 1.3!63 He suggests that it might not be merely that people like natural scenes but that they like any scenes with the right fractal value. Gerard Manly Hopkins’s “likeness tempered with difference” actually has a specific D number. If this is so, then designing architecture and objects with this fractal value would make them more pleasing to the human psyche and perhaps lead to less stressful urban landscapes.

So there is plenty of evidence that there are some hardwired processes that are influencing our preferences and our visceral reactions. But we all know that some of our aesthetic preferences have changed as we have gotten older or perhaps studied some form of art. We didn’t like opera, but now we do. We didn’t like Asian art, but now we do. We didn’t like Andy Warhol, and we still don’t. We used to like colonial furniture, and now we don’t. Our preferences evolve over time. What causes them to change?

The fluency theory of Reber and his colleagues suggests that the various preferences described above are things our brains have evolved to process quickly, and when we process something quickly, we get a positive response. We process the fractal D 1.3 quickly and get a positive reaction. They have been able to measure this. Positive emotional responses increase activity over the zygomaticus major, or smiling muscle, in our faces. This response can be measured with electromyography. When we see something that our brain processes with high fluency, we actually get increased activity in this muscle way before a judgment about it is made. We get a little positive priming action for the judgment we are about to make. They have shown that this positive emotional response then contributes to the aesthetic judgment, “Yes, that’s good, I like it.” So the basis for our aesthetic judgment is not the fluency alone, but fluency coupled with the positive response that one feels when something is processed quickly.10 This means that what we like is the process, not the stimulus. Plato was wrong, beauty is not independent of the observer. It can also explain why, if someone tells you, “You aren’t going to like this!” before you process it, the negative bias may overwhelm the positive one you would have received on your own.

We like things that are familiar. We have all had the experience of not really liking something the first time we have seen it or heard it, but over time it has “grown on us.” We increase our processing fluency with increased exposure. The liking of familiar things and wariness of the new obviously can be adaptive. In exposing ourselves to the unfamiliar, our memory, learning, and culture are involved. They are supplying past data about what we are exposed to, or forging new neural connections to accommodate new information, or speeding up the processing of recently novel stimuli. This is another type of fluency besides perception. This is conceptual fluency: the meaning of a stimulus. Sometimes more complex stimuli are necessary to convey meaning. This is what Donald Norman was referring to as beauty in depth, in meaning and implication—reflective beauty.

Neural Correlates of Beauty

What is going on in the brain when it observes aesthetically pleasing sights? Hideaki Kawabata and Semir Zeki at University College London had some university students with no specific art education look at three hundred different paintings, then rank on a scale of 1 to 10 whether they were ugly, neutral, or beautiful. Different subjects picked different paintings, and some paintings that were in the beautiful category for one person were in the ugly category for another. Then a few days later, each student had an fMRI scan while looking at the pictures she or he had ranked most beautiful, most ugly, and neutral. By having the students themselves decide the categories before the viewing, Kawabata and Zeki could scan them knowing whether the student thought it an aesthetically pleasing painting or not.

They postulated that because beauty and ugliness were extremes of a continuum, instead of separate areas of the brain functioning for the two different judgments, it was just as likely that there might be a difference in the intensity of an activation of the same areas. They found when subjects were viewing the paintings, the orbitofrontal cortex, which is known to be engaged during the perception of rewarding stimuli, was active, and it was more active when viewing a beautiful painting. The motor cortex was also active, becoming more active when viewing an ugly painting, as it is with other unpleasant stimuli, such as transgressions of social norms, and with fearful stimuli, including scary voices and faces, and anger.6 This makes sense when we remember that we are directly wired to be best and fastest at avoiding danger, which our emotions categorize as unpleasant or negative.

However, in Kawabata and Zeki’s experiment, the aesthetic judgment had already been made. It seems more likely that what they learned was what areas were used after the judgment had been made. Camilo Cela-Conde and his group wondered whether part of the prefrontal cortex, the most evolutionarily advanced part of the human brain, was active in the actual aesthetic judgment. They were curious about the fact that there was a great proliferation of art about 35,000 years ago, and wondered if this had anything to do with changes in the prefrontal cortex. They designed their study differently than Kawabata and Zeki. They had some people look at pictures of artwork of different styles, and photographs of different landscapes both natural and urban, and scanned their brains as they were doing so. If subjects found the picture beautiful, they raised their finger. Because the experiment was set up in this way, these subjects were also deciding what they thought was beautiful, but deciding it while being scanned.

By watching what areas of the brain were being used over a period of time, Cela-Conde and his colleagues could track the input from the visual system and see where it went. Cool, huh? They were able to confirm what others had found about the visual system, that it indeed has different stages in the processing of forms and that there was activation beyond the visual system in the prefrontal cortex. The dorsolateral prefrontal cortex (dlPFC) is known to be critical for the monitoring of events in the working memory and, along with the cingulated cortex, is known to be active in decision making. In this case, the cingulated cortex was active in deciding between beautiful and not beautiful, but the dlPFC was active only when the decision was “beautiful.” They also found that when something was judged beautiful, there was more activity in the left hemisphere. This activation of the prefrontal cortex in deciding that something is beautiful supports the hypothesis that a change in the prefrontal cortex allowed artistic profusion in anatomically modern Homo sapiens, and to a limited extent in Neanderthals.

They also suggest that because the left hemisphere was more active in aesthetic judgments, cerebral dominance may have a role.3

It seems that when something is deemed beautiful, we have more than an emotional reaction. Other parts of our brain are engaged, parts that are more evolved in us than in other species. We should be glad that our dogs don’t have the same aesthetic sense. If they were influenced by beauty, there might not be that unconditional love thing with them. We might have to get out of our paint-streaked jeans, get a haircut, or put on makeup for them to wag their tails. We might have to go on a diet.

WHAT ABOUT MUSIC?

Marc Hauser at Harvard and Josh McDermott at MIT, among many others, classify music as a uniquely human endeavor.64 Only humans compose music, learn to play musical instruments, and then play them together in cooperative (usually) ensembles, bands, and orchestras. None of the other great apes create music or sing. Too bad, or Greystoke: the Legend of Tarzan could have been a musical. That means that our common ancestor didn’t sing.

What about birdcalls? They certainly sound like music. Hauser and McDermott say birdsong is a different kettle of fish. Birds sing only in certain contexts: mating and territorial defense. Singing is done primarily by males, and its sole function is for communication. This also seems to be true of whales. It is not done for pure enjoyment. Apparently, birds don’t sing alone in the shower. And birds don’t change their scales or the key in which they sing. There are no telephone-line quartets tweeting harmonies in the bird world. You see a canyon wren; you hear the descending call of a canyon wren. A canyon wren doesn’t all of a sudden change its song from the key of C to A-sharp minor and add a little rhumba beat at the end.

Songbirds are a bit more variable. Some songbird species can mimic and learn the calls of other species and may splice parts of one call with another, although they prefer the calls of their own species.65 There are, however, limitations of various kinds with different species of birds, and no bird species is equally able to acquire new songs at any time of its life. There are sensitive periods when they are able to learn songs more readily.

It is interesting to consider, however, that just as birds have constraints on their auditory systems and what and when they sing, and on when and how they learn and remember their songs, so we too have constraints on our auditory system, on what we consider pleasing music, and on when and how we learn to play and remember it—and we may share some of these constraints with other animals. Comparative studies of these constraints are just beginning.

However, there is something unique going on in our brains that has picked up the tempo, so to speak. We compose new music, play it, and listen to it not just to attract chicks, pay the bills, or impress our friends. We can pick up the fiddle and fire off a tune when we are alone, just for the sheer pleasure of it. Inventing and playing music uses all our cognitive machinery, as anyone knows who has learned to play. It is not an easy assignment. Perception, learning and memory, attention, motor action, emotion, abstraction, and theory of mind are all harnessed into action. Music is another one of those human universals.66, 67, 68 Every culture in the present and in the past has had some form of music. People like to boogie. Perhaps the oldest musical instrument that has been found is a fragment of a bone flute made from the femur of the now-extinct European bear. It was excavated in 1995 by paleontologist Ivan Turk in a Neanderthal burial mound in Divje Babe, Slovenia. Whether this is truly a flute is controversial. It has been determined to be around 50,000 years old. In all likelihood, there were probably drums from earlier dates that were made of materials that have not been preserved.69 To the consternation of those who attribute the tonal octave to relatively recent western music, still playable 9,000-year-old flutes have been found in Jiahu, China. These flutes sound tonal scales, one of them an octave.70

We Are All Musicians

The adaptive theories of music have explanations similar to the ones we heard for visual art. Steven Pinker ruffled feathers, as only he can do, a few years ago when he wrote that he suspected that music was auditory cheesecake and that perhaps it had no adaptive purpose but was a by-product of other functions.2 Cheesecake? Many disagree with his conclusion and think music serves an adaptive function. Like the other arts, perhaps it has been sexually selected to attract mates (the arguably adaptable Mick Jagger effect) and to signal mate quality, as the sexual-selection advocate, Geoffrey Miller, suggests.18 Or maybe it acted as a social bonding system, much like language, that synchronized mood and perhaps prepared the group to act in unison, thus binding coalitions and groups.69, 71 But if these were true, why would anyone play music when they were alone? Research on this topic is in its infancy, and there is no widely accepted concept.

Once again, Darwin had something to say. He suspected that music may originally have been adaptive as a form of communication, a protolanguage, that later was replaced by language. If that was true, music now is a “fossil” of a former adaptation. Tecumseh Fitch, a linguist from University of St. Andrews, Scotland, following Darwin’s reasoning, suggests that that would put music in a subtle category of former adaptations having a biologically grounded cognitive domain that are currently being used not as originally selected for but not in a completely different manner either.72

Speech shares many features with music and also with primate vocalizations, such as pitch, timbre, rhythm, and changes in volume and frequency. These are all things that we are good at identifying even without musical training. You may think that you don’t know anything about these aspects of music, but if I ask you to sing your favorite song, you will be able to do it pretty well. In fact, when Dan Levitin, a former rock-and-roll music producer turned neuroscientist and now a professor at McGill University, asked students to sing their favorite song, they easily reproduced the pitch and tempo of songs.73, 74 If I play a note on a piano and the same note on a violin, you will be able to tell which is which. That means that you can recognize the timbre of the note. In fact, you knew all that stuff when you were a baby.

Sandra Trehub, who studies the developmental origins of music in infants at the University of Toronto, summarizes findings that babies from at least six months old have relative pitch: They can recognize a melody even if it is played in a different key.75 The only time any other mammal has demonstrated relative pitch was in one experiment done on only two rhesus monkeys.76 But they weren’t as good as babies. They could recognize melodies played an octave apart as being the same, but not if they were played in different keys or in an atonal scale. Babies also recognize melodies if they are played at different tempos. This is not because they can’t tell the difference between them; they are very discriminating. They can differentiate between semitones in a scale, changes in the timbre, tempo, meter, and grouping of notes, and duration. They can tell consonance from dissonance from the age of two months, and they prefer consonance and harmonic music to dissonant.* This does not appear to be culturally engendered, but that has been difficult to prove. Babies who have never heard any form of music are rare. Even fetuses respond to music with changes of heart rate.77

Music has proven to be a difficult research topic because it has all those components I have already mentioned: pitch, timbre, meter, rhythm, harmony, melody, loudness, and tempo. These are part of musical syntax and are also part of verbal syntax.

Have you ever tried to speak a foreign language? Trying to be social with a bus driver in Italy on a rainy day, I asked, “Dov’e il sole?” a short and simple sentence. He looked at me puzzled. I thought to myself, I know I have the words right. He must just be perverse in not recognizing them. But then I thought about all the times someone has said something to me in English with a foreign cadence and I haven’t been able to understand him or her. The words were correct, but the emphasis was on the wrong syllables, or the wrong word in the sentence was emphasized, or the words ran together incorrectly. I realized I had pronounced sole with the accent on the second syllable, as if I were saying soleil in French, rather than on the first syllable. Think of the sentence “Sunday was a lovely day for sailing,” but say it as if it were written “Sunday was, a love lyday forsai ling.” Your companion would look puzzled too. Prosody is the musical cues of language: melody, meter, rhythm, and timbre. Prosody helps delineate the word and phrase boundaries. Some languages are very melodic, like Italian. Some languages, such as Chinese, are tonal, which means that the same word means different things just by varying the pitch. Some researchers think that the brain, at least at an early age, treats language as a special case of music.78

We know that music can convey emotion, just as some animal calls can. However, music can convey meaning other than emotion.79 It can actually prime you for the recognition of words. There is a way to measure with an EEG how semantically similar the brain recognizes words to be. Just as when a person is presented with a sentence such as “The sky is blue,” and then recognizes the word color afterward as being more closely related than the word billboard, a certain passage of music will prime you to afterward recognize certain words as being more semantically related to the music than others. For example, after hearing musical notes that sound like a clap of thunder, you would find the word thunder more related than the word pencil. In fact, when words were presented that the composer, by his own admission, was trying to convey, such as stitch (as in sewing), they were actually the words that the listener found to be related. Many musical sounds are universally recognized to convey certain meanings. Like language, music has phrase structure and recursion. You can create an endless variety of musical phrases by putting together different notes and groups of notes. Just as humans are easily able to assemble phrases into an infinite number of meaningful sentences, we are able to structure and process multiple musical phrases. It appears that humans are the only animals with the ability to do this both verbally and musically.80

Music and language also share some of the same neural areas. Dan Levitin, working with Vinod Menon at Stanford, has found two regions of the frontal lobe* that are closely associated with the processing of language and are also active when listening to classical music with no accompanying song. They speculate that this area is used to process stimuli that evolve over time, not only words but musical notes.81 Other researchers have found that if you hear a chord that is not “right,” something your brain does not expect to hear, an area in your right frontal cortex is activated, as well as the area that corresponds to that area in the left frontal cortex, which is thought of as the language network.82, 83 This corresponding area in the left hemisphere is also activated when you hear a phrase structure that is wrong, such as “dog walked park he.” These areas appear to be sensitive to violations in expected structure, and in the left hemisphere there is an overlap between music and language processing.

Just as we like to hear a good story or look at a starry sky, we also play music because we like to hear it. What do we like to hear? As I mentioned before, we like consonance, and, though you might freak out when I tell you this, there is another fractal thing going on with music. Scaling noise is a type of sound whose quality is unaffected by how fast it is played. White noise is the simplest example. It is monotonous at any play speed. It is at one end of the spectrum of scaling noise; it is made up of completely random frequencies. At the other end is noise that is completely predictable, like a dripping faucet. In the middle is noise with what is known as 1/f spectra; it is partially random and partially predictable. The amplitude and pitch fluctuations of natural sounds, such as running water, rain, and wind, often exhibit 1/f spectra.84, 85 In other words, large, abrupt changes in pitch or loudness occur less frequently in nature than gentle, gradual fluctuations. Most music falls into the same range of 1/f spectra.84 Furthermore, human listeners reportedly prefer 1/f-spectra melodies to melodies with faster or slower changes in pitch and loudness. Many auditory cortical neurons are tuned to the dynamical properties of the natural acoustic environment,86 which could explain why stimuli with naturalistic amplitude spectra are processed dramatically better than other stimuli.87 Back to the old fluency in processing theory: We process it more easily, so we end up liking it. It’s pretty interesting that both our auditory system and our visual system have this built-in preference for natural landscapes and sounds. It’s also interesting that one of the dictionary definitions for art was the human effort to imitate nature.

So we are listening to some music, and it puts us in a good mood. At least the Stones do. But sometimes it makes us sad. And what about that music in Jaws? That made us tense. Music can actually elicit emotions.88 In fact, you can get so emotional that you get a physiologic reaction, such as the chill down your spine and changes in your heart rate.89 But even more interesting, you can block that reaction by getting injected with the drug nalaxone,90 which blocks the binding of opioid receptors. It is well established the body produces a natural high by releasing its own opioid when we listen to music that we like. Nalaxone, the same drug that is given to someone who has overdosed on heroin and makes it to the ER on time, will also block the binding of the natural opiates that your body produces. The first hints of what was going on in the brain came from scans done on musicians91 as they listened to music that gave them the “chills.” The same brain structures* were activated that are active in response to other euphoria-inducing activities, such as eating food (fats and sugars), sex, and downing so-called recreational drugs.

Menon and Levitin were able to do more-specific scans with nonmusicians and found that the hypothalamus was activated (which modulates heart rate, respiration, and the “chills”), as were specific neural areas that are crucial for reward processing. They also found evidence for a correlation between dopamine release and the response to pleasant music. This is a big finding. Dopamine is known to regulate opioid transmission, and increased levels are theorized to cause positive affect.92 This release of dopamine also happens as a reward when one drinks water and eats food, and also is the reinforcing effect of addictive drugs. Is music rewarded because it too is a survival-related stimulus? Or is it auditory cheesecake, just another recreational drug? This question has not yet been answered, but one thing is for sure: Music does increase positive affect, just as some visual stimuli do.

Increasing positive affect is a good thing, whether it is from auditory, visual, or any other sensory experience. Being in a good mood increases cognitive flexibility and facilitates creative problem solving in many different settings. It has been shown to increase verbal fluency. People with a positive affect widen category groups by finding more similarities between objects, people, or social groups, enabling a socially distinct out-group to be placed into a broader mutual in-group—“Well, I know he is a Lakers fan, but at least he loves to fish!” This results in less conflict. Having a positive affect makes tasks seem more rich and interesting. Interesting tasks make work more rewarding and induce people to find improved outcomes in problem solving. A good mood stimulates you to seek variety in safe pursuits, making you more inventive on dates. It just makes you a more pleasant and less rigid person to be around. This in itself would have adaptive potential.

Does Music Affect Our Thinking Abilities?

Spatial abilities are used to create, think of, remember, and change visual images in one’s mind. For instance, looking at a two-dimensional map and being able to visualize its information in three dimensions to find one’s way around in a city uses spatial ability. A few years ago, there was a suggestion that listening to certain classical music would increase your spatial abilities.93 It became dubbed the Mozart effect. However, it proved difficult to confirm, and later studies revealed that it wasn’t listening to classical music or Mozart per se that made you smarter, but rather listening to music you prefer puts you in a better mood. When you are in a good mood, you are aroused, and this can lead to enhanced performance on a variety of tests of cognitive ability. Arousal stimuli aren’t limited to music. One can be aroused by other preferred stimuli, such as a licking a glob of Nutella off your finger, or drinking a cup of coffee.94

Moreover, listening to music and actually taking music lessons are two different things in terms of their effect on the brain. Glenn Schellenberg, at the University of Toronto, has found in a randomly assigned group of six-year-old children who received keyboard lessons, voice lessons, drama lessons, or no lessons that music lessons in childhood are associated with small but long-lasting increases in IQ. (He incidentally found that drama lessons enhance social behavior but not IQ.) This increase was not affected by family income or parents’ education, nor was it seen with other types of extracurricular studies. Learning music made you a little bit smarter. You can safely bet that these findings have sparked a great deal of interest. Proof of training in one field that generalizes to others has been hard to find.

In a detailed review of transfer effects, the ability to transfer knowledge gained in one context to another very similar context (near transfer) or dissimilar context (far transfer), Steve Ceci and colleagues95 found little evidence in a century’s worth of previous studies for far transfer. Although there is little evidence for it, there is widespread belief that far transfer occurs, and this belief is central to Western concepts of education. Schellenberg points out that the goals of formal education are not just to build skills in reading, writing, and arithmetic but to develop the capacity for reasoning and critical thinking. His data that reveal music lessons increase IQ are a rare example of far transfer and might actually contribute to this process.96 Should we be putting band and music lessons back in school programs instead of trimming them from the budgets? Do we know what music training does for the brain? We know a little but not exactly why it may increase IQ.

We know that musicians are using many skills at one time. They are seeing notes that are written and translating them to a special motor activity that has a time line. This involves both hands and in some cases the legs and feet, the mouth, and the lungs. Musicians use intonation and timing to imply emotion, they may transpose music to different keys, and they may improvise melodies and harmonies. Long passages are committed to memory. Musicians often sing and play at the same time. Certain brain regions in musicians are bigger than in nonmusicians. It is not known if this is due to learning to play an instrument or if children who choose to learn an instrument have neural differences to begin with, but there is much evidence to suggest that learning causes these changes. There are also greater differences in the size of certain brain regions in those who began musical training at an earlier age. For instance, violin players have a larger region for the fingers of their left hand, the effect being smaller for the thumb, which is not used to an equal extent, and the overall increase is greater in violinists who started their training at a younger age.97 There are also corresponding size differences that correlate with the intensity of musical training throughout life. Professional musicians (keyboard players) have more gray matter volume in motor, auditory, and visual-spatial brain regions compared with amateur musicians and nonmusicians.98 These and other similar studies suggest that musical training can increase the size of certain neural structures. There are also suggestions that along with increases of IQ, it enhances verbal memory (you’ll be able to remember jokes better), motor ability (you’ll be a better dancer), visual-spatial abilities (you’ll be better at juggling), the ability to copy geometric figures, and possibly mathematical ability.

Helen Neville’s group at the University of Oregon is currently investigating the old chicken-and-egg question: Does music cause improvements in cognition, or are people with strong cognitive skills more likely to make the effort to learn music? Learning music requires focused attention, abstract and relational thinking, and what is known as executive control in the brain. Do the kids who study music already have these abilities, or does learning music develop them?

Neville and her colleagues are testing groups of children aged three to five recruited from a Head Start program. Their preliminary findings are that the children in each of the music/arts groups have more significant gains in language and preliterary skills than the gains made by children in the regular Head Start group. Children who received music/arts training also displayed significant gains in attention, visual-spatial skills, and numeracy. Children in the attention-training intervention displayed a similar pattern. If these results hold up, they suggest that training in music and the arts does improve language, attention, visual-spatial, and numeracy skills.99

Improving attention is also important. One aspect of attention, executive attention, concerns the mechanisms for self-regulation of cognition and emotion, such as concentration and impulse control. Being able to control emotional impulses can be lifesaving in panic situations.* How well this works is partly under genetic control, but Michael Posner and colleagues at the University of Oregon wondered if home and school environments could also exert an influence, as they do for other cognitive networks. This group has found that children aged four to six who participated in attention-training tasks improved their emotional control.100 This improvement was equal to that garnered over the passage of developmental time. They suggest that the immature system can be trained to function in a more mature way and also argue that the effect of attention training extends to more general skills, such as those measured by intelligence tests.

Currently a group from Boston101 is running a long-term study with the other chicken-and-egg problem of brain size. Do children who choose to participate in musical training (piano or string instruments) show neural differences prior to training compared to a control group of children not seeking music lessons? They are also testing whether the music students have innately superior visual-spatial, verbal, or motor skills. Their third aim is to see if a test measuring musical perception before their training began correlates with any of the cognitive, motor, or neural outcomes associated with music training. Their initial screening showed there was no difference in the groups of children before beginning musical training. After the first fourteen months of study, preliminary results in five- to seven-year-old children suggest that cognitive and brain effects from instrumental music training can be found. So far, these effects are small and are in areas that control fine motor skills and melodic discrimination.102

Another researcher, John Jonides, at the University of Michigan, has been testing musicians to see if they have better memories. It appears that they do, both long- and short-term memory in both visual and verbal tests. They are currently in the process of seeing if there is a close relationship between musical training, musical skill, and memory.103

For years, many people have thought musicians have greater mathematical skills. I would bet if you asked people on the street what cognitive advantage playing music gave to a person, this would be a very common answer. However, evidence for this is sketchy. Elizabeth Spelke is in the midst of testing mathematical abilities and music training in several different age groups. She has four different age groups: five to ten years, eight to thirteen, thirteen to eighteen, and adults. Preliminary results from those aged eight to thirteen show a significant advantage in geometric representation for the music-trained children; other results are pending.

CONCLUSION

It seems that Tooby and Cosmides are right when they suggest that children should be immersed in an aesthetically pleasing environment. But children are not the only ones to benefit. Whether you are sitting in a mountain meadow or catching alpine glow along the Seine, looking at a Bonnard or your own latest handiwork, listening to Beethoven or Neil Young, watching Swan Lake or showing your kids how to tango, reading Dickens or telling your own tall tale, art can put a smile on your face. We may be smiling because our cocky brain is pleased with itself, because it is fluently processing a stimulus, but you don’t need to tell the artist that. The benefits to the individual and society from positive affect alone suggest that the world is a happier place if it is beautiful. I think the French figured this out a while back.

The creation of art is new to the world of animals. It is now being recognized that this uniquely human contribution is firmly based in our biology. We share some perceptual processing abilities with other animals, and therefore we may even share what we call aesthetic preferences. But something more is going on in the human brain—something that has allowed us to engage in pretense, as Alan Leslie suggests, some connectivity change that has allowed us to decouple the true from the imaginary and, as Tooby and Cosmides suggest, to use contingently true information. This unique ability has enabled us to be very flexible and adaptable to different environments, to break out of the rigid behavioral patterns that other animals are subject to. Our imaginative ability allowed one of us thousands of years ago to look at a wall of an empty cave in France and decide to spruce it up with a little fresco, another to tell the story of the odyssey of Ulysses, another to look at a chunk of marble and see David trapped inside, and another to look at a strip of bay-front property and envision the Sydney Opera House. What caused this connectivity change is unknown. Was it due to a change in the prefrontal cortex as a result of some small genetic mutation, or was it a more gradual process? No one knows. Did the increasing lateralization of brain function that we will read about in chapter 8 contribute to it? Maybe.